目录
关于学习方法
额...我没有什么特别的方法。我本身是学统计学(数据挖掘方向)出身的,编程能力是短板(虽然随着学习的跟进,我发现真真短板的数学。数学决定天花板,编程决定门槛。)
编程这块我的学习方式就是搬砖。一本书一本书的搬,就是一定要动手去搬,眼过一遍屁用没有。我看书好多大牛大都是从学习别人的代码慢慢开始敲的,好好搬砖,慢慢就会砌墙,慢慢就会建房子,一口吃不成胖子。
数学这块的话,高数、线代、概率论数理统计这三本打底,数分、高代、随机过程续命。还有个别方法要求模糊数学、离散数学的知识。慢慢学吧,数学这块真的无止境.............
关于笔记来源
笔记是我根据自己的学习顺序,所有看过的参考书均会整理一部分笔记,我在每篇博客首页都会有一个笔记说明,将我参考的工具书按照参考文献的格式明明白儿白儿的列举出来,还有其他参考或者推荐的博客我也会将链接贴出来。
关于数据
如果这个数据可以共享出来,我会在每一个章节的最开始说明数据下载地址、也会上传到我CSDN的资料下载中,并以链接跳转的方式展示出来。
如果实在下载不到数据,可以在对应章节下面评论留言将自己的邮箱附上,我看到后会将数据发给您的。
如果这个数据是私密数据,那么接下来的博客内容只会展示一个代码和结果,不会出现数据。
关于阅读顺序
具体需要看的笔记个人分类!【在每一个分类下面,我的笔记分类是严格按照书目、按照章节标记的。】还是比较条理和清楚的。
关于笔记内容
笔记内容主要是关于python和数据挖掘结合的内容,根据我自己的目标方向,主要的方向因该会分为四大部分:传统的统计模型、机器学习、自然语言处理、常用算法等四个大模块。
关于一些理论基础,上述前两个模块,因为我在学校都学得差不多了,说不上掌握的多么精通,但是了解还是做得到的,之前的笔记我都是在书本和笔记本上做的,等完成上面四个大模块我再来整理理论部分的电子笔记吧;后两个模块的话,我在学习的时候会将电子笔记也整理出来的。
常记于心
希望自己能好好学习,变得优秀。人生来不易,本就是一场带发修行。人的生不会太长,珍惜这段不长也不算短的时光,千万不要蹉跎岁月。每天晚上问问自己,今天收获了什么、提高了什么,你会欣赏现在的自己么?
常立志者十之八九,立长志者不存一二。
在这里把flag立起来。在学习之路上,将这个博客坚持下去。
学习是有趣的,也是孤独的。记着我的理想不是事业成功,而是环游世界、享受生活。希望后半生的有一天我可以一拍手说,我不干了,我要去考察各国民俗风情,我要躺在椅子上晒太阳,我要去当一民乡村教师,我要去山上摘桃子...是的,为了后半生的这些,我的前半生要积累点资本,钱不求多,够我到死花光就好;知识就要多多益善,活到死学到死。