Ian_Wonder
码龄7年
关注
提问 私信
  • 博客:317,146
    317,146
    总访问量
  • 111
    原创
  • 1,767,540
    排名
  • 36
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:四川省
  • 加入CSDN时间: 2017-09-12
博客简介:

qq_40212975的博客

查看详细资料
个人成就
  • 获得196次点赞
  • 内容获得80次评论
  • 获得518次收藏
  • 代码片获得1,597次分享
创作历程
  • 1篇
    2023年
  • 14篇
    2021年
  • 58篇
    2020年
  • 41篇
    2019年
成就勋章
TA的专栏
  • 华为od刷题学习
  • 机器学习十一天打卡
    1篇
  • 机器学习
    5篇
  • NLP自然语言处理
    5篇
  • 杂七杂八
    15篇
  • code问题记录
    21篇
  • linux
    4篇
  • 刷题
    9篇
  • 论文阅读
    3篇
  • python学习
    5篇
  • 生成式对抗论网络
  • 语音识别
    2篇
  • kaldi
    2篇
  • 计算机视觉
    4篇
  • 李宏毅GAN生成式对抗网络
  • C++
    1篇
  • 博弈论
兴趣领域 设置
  • 人工智能
    opencv语音识别计算机视觉机器学习深度学习神经网络自然语言处理tensorflowpytorch图像处理nlp数据分析
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

1、为什么要经常对数据做特征归一化

特征归一化
原创
发布博客 2023.02.11 ·
1189 阅读 ·
0 点赞 ·
1 评论 ·
3 收藏

算法记录题四

1、什么是集成学习算法?2、集成学习主要有哪几种框架,并简述他们的工作过程?3、Boosting算法有哪两类,他们之间的区别是什么?4、什么是偏差和方差?5、如何从减少方差和偏差的角度解释Boosting和Bagging的康?6、随机森林的工作原理是什么?7、随机森林的随机性主要体现在哪些方面?8、随机森林算法有哪些优缺点?9、为什么随机森林不能用全部训练样本去训练m颗随机树?10、简述随机森林和GBDT的区别...
原创
发布博客 2021.08.18 ·
210 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

算法题记录三

1、机器学习中的逻辑回归与线性回归有哪些异同点?2、回归问题常用的性能度量指标有哪些?3、分类问题常用的性能度量指标有哪些?4、逻辑回归的损失函数是什么?如何推导?5、处理多标签分类问题,逻辑回归一般怎么做?6、全概率公式&贝叶斯公式分别是什么?7、朴素贝叶斯(Naive Bayes),“Naive”在何处?8、朴素贝叶斯有没有超参数可调?9、简述朴素贝叶斯的工作流程?10、朴素贝叶斯对异常值是否敏感?...
原创
发布博客 2021.08.18 ·
191 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

算法题记录二

1、为什么要经常对数据特征做归一化?2、为什么需要特征组合?如何处理高维组合特征?3、欧式距离和曼哈顿距离的区别?4、 哪些场景使用余弦相似度?哪些使用欧式距离?5、什么是独热编码?相较于直接使用数字作为表示的优点是什么?6、简述过拟合和欠拟合的具体表现?7、缓解过拟合和欠拟合的方法有哪些?8、L1和L2正则先验分别服从什么分别?9、为什么树形结构不需要进行特征归一化?10、数据不平衡是什么?如何解决数据不平衡问题?...
原创
发布博客 2021.08.18 ·
157 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

算法题记录一

1、RNN中发生梯度消失的原因是什么?2、RNN中使用Relu可以解决梯度消失的问题吗?3、LSTM为什么可以解决梯度消失/爆炸的问题?4、GRU和LSTM的区别?5、LSTM算法有哪些不足之处?6、写出Attention的公式Attention机制,里面的q,k,v分别代表什么?7、Transformer中使用多头注意力的好处是什么?8、Attention中self-attention的时间复杂度9、Transformer中encoder和decoder的异同点?10、 Bert和GPT
原创
发布博客 2021.08.18 ·
127 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

今天编译insightface中出错,关于setup

python setup.py build_ext --inplace这行命令可能会帮你解决很多问题,我就是这样解决的
原创
发布博客 2021.07.18 ·
489 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

error: Microsoft Visual C++ 14.0 is required. Get it with “Microsoft Visual C++ Build Tools“,以及安装包缺失

第二次遇到这个问题了,之前没做记录,又不记得了,所以这次一定要做个记录:error: Microsoft Visual C++ 14.0 is required. Get it with “Microsoft Visual C++ Build Tools”: https://visualstudio.microsoft.com/downloads/从链接:https://pan.baidu.com/s/169Jdn-9Zh93bS37WjiGfsg提取码:g6t3 下载vs包,进行安装,这时若出现安.
原创
发布博客 2021.07.17 ·
1488 阅读 ·
3 点赞 ·
1 评论 ·
12 收藏

上采样下采样 过采样 欠采样

一、上采样和下采样的对比上采样:放大图片下采样:缩小图片二、过采样和欠采样的对比针对于正负样本不均衡,例如当正负样本比例达到1:99,分类器将所有的样本都判为负样本能达到99%的正确率,显然结果不是我们想要的。又例如,有一组数据,其中标签为1的样本数有2000,标签为0的数为400。过采样:从少数类样本中(这里标签为0的样本就是少数样本)重复抽取样本,对少数类样本进行多次复制,扩大数据规模欠采样:从多数类样本中(这里标签为1的样本就是多数样本)丢弃部分样本,可能会损失部分有用的东西,造成模
原创
发布博客 2021.07.06 ·
746 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

pytorch的学习

torch.save(net1, 'net.pkl') #保存entire net整个网络torch.save(net1.state_dict(), 'net_params.pkl') #保存参数```
原创
发布博客 2021.05.10 ·
111 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

python 删除两个文件中没有一一对应的名称

删除两个文件中没有一一对应的名称,针对于.jpg文件和xml文件没有对齐#!/usr/bin/python3# -*- coding:UTF-8 -*-import osimport shutilfile_name_1 = "JPEGImages" #图片文件存放地址file_name_2 = "Annotations" #标记文件存放地址#file_name_1#count = 10415#图片起始编号image = []annotation =[]for file in os.l
原创
发布博客 2021.04.14 ·
408 阅读 ·
1 点赞 ·
3 评论 ·
9 收藏

百度爬取图片,亲测可用

# -*- coding: utf-8 -*-"""根据搜索词下载百度图片"""import reimport sysimport urllibimport requestsdef get_onepage_urls(onepageurl): """获取单个翻页的所有图片的urls+当前翻页的下一翻页的url""" if not onepageurl: print('已到最后一页, 结束') return [], '' try:
原创
发布博客 2021.04.12 ·
271 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

ubuntu卸载cuda

cuda 10.0及以下版本卸载cd /usr/local/cuda-xx.x/bin/sudo ./uninstall_cuda_xx.x.plsudo rm -rf /usr/local/cuda-xx.xcuda 10.1及以上卸载cd /usr/local/cuda-xx.x/bin/sudo ./cuda-uninstallersudo rm -rf /usr/local/cuda-xx.x其中xx.x代表你自己的cuda版本号...
原创
发布博客 2021.04.08 ·
342 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

使用python将视频切分为图片

# -*- coding:UTF-8 -*-import cv2import numpy as npimport random import os# 定义保存图片函数# image:要保存的图片名字# addr;图片地址与相片名字的前部分# num: 相片,名字的后缀。int 类型def save_image(image,addr,num): address = addr + str(num)+ '.jpg' cv2.imwrite(address,image) # 读取
原创
发布博客 2021.03.15 ·
1611 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

使用python进行文件夹重命名

import osfile_name = "JPEGImages/" #文件存放地址count = 0for file in os.listdir(file_name): os.rename(os.path.join(file_name,file),os.path.join(file_name,str(count)+".jpg")) count+=1
原创
发布博客 2021.03.15 ·
283 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

机器学习之Adaboost笔记

一、Adaboost的特性Adaboost对每一个样本分配权重,对每一轮的弱分类器也分配一个权重。Adaboost通过分类误差率来更新下一轮的样本权重,即提高被误分类的样本权重,并降低被正确分类的样本权重,使得没有被正确分类的样本在后一轮训练时获得更多的关注。对基分类器分配权重,加大误差率较小的弱分类器权重,使其在表决中起较大的作用。二、Adaboost算法输入:训练数据集T = {(x1, y1), (x2, y2), (x3,y3),…(xn,yn)},其中xi ∈ X ⊆ Rn,
原创
发布博客 2021.01.06 ·
250 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

判断一个数是否为素数之费马测试

费马测试被称为概率性素性测试,它判断的是“某个数是素数的概率大不大”。如果P为素数,那么所有比P小的数Q都满足公式 QP mod P = Q ,即例素数5的性质,比素数5小的数有4、3、2、1,那么:45 (45=1024)mod 5 = 435 (35=243)mod 5 = 325 (25=32)mod 5 = 215 (15=1)mod 5 = 1满足公式 QP mod P = Q 。实际使用中不需要对所有的Q进行计算,只需要随机选取几组即可。但反过来,如果所有Q都满足条件,
原创
发布博客 2020.12.06 ·
1302 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

ubuntu下监督显存使用情况

watch [options] command例:每隔5秒监视一次watch -n 5 nvidia-smi
原创
发布博客 2020.11.10 ·
218 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

visual studio code 2019远程连接服务器

一、安装sftp:二、配置sftp:按住ctrl+ship+p键,得到以下画面,选择SFTP:Config当右下角出现:意思时需要一个文件夹,点击open folder后,选择或者创建一个文件夹,再回来就会看到一个类似于这样的:上面是你需要修改或添加的地方。再ctrl+s保存,完毕。连接成功,是不是超级简单。...
原创
发布博客 2020.11.06 ·
4196 阅读 ·
4 点赞 ·
0 评论 ·
3 收藏

argmax与max的区别

y = max f(x) ##表示y是函数f(x)的最大值y = argmax(f(x)) ##表示y为函数f(x)取得最大值时,参数x的值例:f(x) = x3,x的取值范围是{0,1,2,3}y = max(f(x)) = 27y = argmax(f(x)) = 3
原创
发布博客 2020.11.05 ·
1345 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

Stepwise Extractive Summarization and Planning with Structured Transformers

论文链接Stepwise Extractive Summarization and Planning with Structured TransformersAbstract1. Introduction2.Related work3. Problem: Stepwise Content Extraction4 Stepwise HiBERTAbstract本文提出了一个使用结构化的 transformer—HiBERT和Extended transformer来做摘要抽取的分布式方法。通过将之前生.
原创
发布博客 2020.11.05 ·
294 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏
加载更多