通过斐波那契数列分析实现函数时采用递归和循环的利弊

斐波那契数列的递归实现
int f(int n)
{
	if (n > 0)
	{
		//int a = 1, b = 1, c;
		if (1 == n)
			return 1;
		if (2 == n)
			return 1;
		return f(n - 1) + f(n - 2);
	}
	
	return -1;
}


斐波那契数列的循环实现

int f(int n)
{
	int a = 1;
	int b = 1;
	int c,i;
	for (i = 3; i <= n; i++)
	{
		c = a + b;
		a = b;
		b = c;
	}
	return b;//注意一定要返回b
}                                                                                                                                                         
采用递归虽然简洁一点,但是递归由于是函数调用自己,而函数调用是有时间和空间消耗的:每一次函数调用,都需要在内存栈中分配空间以保存参数,返回地址及临时变量,而且往栈里压入数据和弹出数据都需要时间。斐波那契数列数列递归算法中有许多是重复计算的,当n = 6的时候,得先计算f(5)的时候要把f(1),f(2),f(3),f(4)算一遍,计算f()的时候又得把<span style="font-family: Arial, Helvetica, sans-serif;">f(1),f(2),f(3)再重新算一遍。随着n的增大,重复的节点会急剧增加,造成效率低,还有可能造成更严重的问题:调用栈溢出</span>
<span style="font-family: Arial, Helvetica, sans-serif;">所以斐波那契数列实现最好采用非递归的方式。</span>

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值