Noisy Correspondence Learning with Meta Similarity Correction -- 论文阅读笔记

在这里插入图片描述

前言

本文是笔者在阅读完论文《Noisy Correspondence Learning with Meta Similarity Correction》后的一些笔记概括以帮助理解,包含了个人想法,如有谬误,欢迎指正。更多细节请见原文。
论文链接:https://ieeexplore.ieee.org/document/10204064

CVPR2023 基于元相似性校正的噪声对应学习

一、研究背景

在跨模态任务中,由于多模态的数据更难以手动标注,许多任务都倾向于使用在互联网收集共发生数据的数据集,因此引入了数据的噪声对应(对齐误差)问题。

二、研究动机

NIPS 2021的NCR方法首先研究了这一问题,该方法基于DNNs的记忆效果,导致在高噪声比下性能较差。为了解决这一问题,我们提出了一个元相似度校正网络(MSCN),旨在为主网的噪声特征提供可靠的相似度评分。同时,我们进一步提出了一种元知识引导的数据净化策略,以去除可能存在错误对应关系的样本。

三、相关工作

元学习的目标是在比传统学习更高级的水平上学习,比如学习更新规则,找到容易微调的参数,或者适应新任务。最近,有研究使用元学习来寻找对噪声标签具有鲁棒性的模型参数。例如,在常规训练之前优化了元目标,使模型不会对噪声过拟合;使用元过程自动为训练样本分配权重。MLC提出了一种以元方式训练的标签校正网络,它可以为带噪声的训练数据生成可靠的标签。

这篇文章的思路跟MLC类似:将样本中图文是否匹配的判别工作视为一个单独的二分类任务,使用可训练的MSCN模型进行训练,由此得到更可靠的相似性判别分数。

四、解决方案

在这里插入图片描述

1、元数据构建

原始数据集会被划分为正元数据集和训练集,正元样本从正元数据及中提取,负元样本从训练集中的提取,并人为构建不匹配的负元样本对。值得注意的是,元数据集的大小远小于训练集大小。

2、元网络结构

元网络一个简洁的2层MLP,输入主网络的特征,输出[0,1]的相似性作为匹配概率。

3、训练流程

在这里插入图片描述
a) 第一阶段:输入训练集对主网络(SGRAG)进行训练,使模型具备基本的表征能力;

b) 第二阶段:输入元数据训练元网络,使元网络具备对样本匹配与否的判别能力;

c) 第三阶段:结合元网络对整个网络进行正式训练。

4、优化目标

正式训练阶段的损失函数设计如下:
在这里插入图片描述
a) F w F_w Fw是主网络的特征提取器;

b) V θ V_\theta Vθ是元网络的相似性判别器;

c) γ \gamma γ是相似性间隔,控制对模型输出的正负样本相似度之间的差值的容忍程度;对于这一点,个人理解:考虑 γ = 0 \gamma=0 γ=0的情形,对于第一项,如果 I i I_i Ii T i T_i Ti的相似性等于 I i I_i Ii T i − T_i^- Ti(最难负文本)的相似性,第二项同理,那么损失函数值为0,相当于优化目标容许这种情况存在,没有做出惩罚。但是从模型优化的角度这是不合理的,会导致模型无法正确区分匹配的正样本和最难的负样本,因此需要加入 γ \gamma γ对此情形做出惩罚, γ \gamma γ的值越大,越要求模型对正样本输出的相似度高于最难负样本。

d) 整体是经典的双模态对比学习范式。
在这里插入图片描述
模型鲁棒学习的能力体现在对 γ \gamma γ的自适应调整上。
s i s_i si是元网络对当前样本输出的归一化相似性(为了保证可计算,实际上是归到了 [ 10 e − 4 , 1 − 10 e − 4 ] [10e-4,1-10e-4] [10e4,110e4]),当预测接近1的时候 γ \gamma γ接近0,认为该样本大概率干净,放宽模型预测的正样本相似度和负样本之间的差值要求;当预测接近0的时候 γ \gamma γ最大,认为该样本大概率存在匹配噪声,对模型预测的正负样本之间相似性的差值从严处理,加大惩罚力度。

5、元网络的判别

在这里插入图片描述

由于三元损失的性质,即使采用MSCN得到的理想的相似分数,也会对噪声对产生正损失(原文:it remains to producepositive loss for the noisy pairs),从而导致模型与噪声拟合。为了解决这个问题,在训练时只使用干净的样本作为训练数据。对样本干净与否的判别,NCR采用的策略是利用DNNs的记忆效应,使用GMM拟合训练初期的损失进行判定。本文用混合模型拟合更直接的元网络相似性(个人理解:因为在元网络有效的前提下,对干净和噪声数据输出的相似性天然具备分布差异)。但是由于该相似性具备高度倾斜的特性,所以使用更适应这种类分布的BMM(Beta Mixture Model)。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
学习邻居一致性是一种用于处理噪声标签的方法。在现实中,数据集中的标签常常会受到一些错误或噪声的影响,这会对模型的训练和泛化能力造成不利影响。而学习邻居一致性则通过考虑样本的邻居关系来进一步提高模型的鲁棒性。 学习邻居一致性方法的核心思想是基于数据的局部性原理,即相似的样本倾向于具有相似的标签。该方法通过比较样本的标签,检测和修复噪声标签,并将不确定性信息引入模型训练过程中。 具体而言,学习邻居一致性方法会首先构建一个样本的邻居图,其中每个样本的邻居是根据特征相似性确定的。然后,该方法会使用邻居信息来计算每个样本的标签一致性得分。通过比较样本自身的标签和邻居的标签,可以有效地检测和纠正噪声标签。 在模型的训练过程中,学习邻居一致性方法会引入一个邻居一致性损失函数,用于最大化样本与其邻居的标签一致性得分。这样,模型会倾向于对邻居们的标签一致性进行学习,从而提高模型的鲁棒性和泛化能力。 总而言之,学习邻居一致性方法通过考虑样本的邻居关系来处理噪声标签。它通过检测和修正噪声标签,引入不确定性信息,并最大化标签一致性得分来提高模型的鲁棒性。这种方法在处理噪声标签方面具有一定的优势,并可在实际应用中取得良好的效果。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值