自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(50)
  • 收藏
  • 关注

原创 组合数学复习

等价着色数: 等价着色是指考虑到对称性质后,两种着色方案被认为是相同的。换句话说,如果两个着色方案可以通过图的自同构来映射,那么它们是等价的。如果我们着色这个图的三个顶点,如果两种着色方案可以通过旋转三角形来相互映射,那么它们是等价的。如果我们只关心颜色不同的情况,而不考虑这种旋转,那么就是在考虑非等价的情况。非等价着色数: 非等价着色数则是不考虑图的自同构,只考虑颜色方案不同的情况下的着色数。如果置换的set有n个元素,那么有n!

2024-01-04 19:44:02 940

原创 Connecting Multi-modal Contrastive Representations

当前的多模态对比表示(MCR)学习依赖于大量高质量的数据对,这限制了其在更多模态上的进一步发展。MCR空间中的嵌入无法全面反映输入的所有语义信息。的嵌入位于每个MCR空间中两个完全。MCR空间表现出模态间隙现象,即。

2023-12-16 23:23:05 958

原创 并行自用复习

有__global__关键字一般是核函数(kernel function),且是void函数;如果需要返回值,可以通过传递指向变量的指针,并在核函数内部修改这个指针指向的值来实现(而不是int函数+return)

2023-12-07 22:28:29 445

原创 范式,ground truth

范式”(paradigm)一词最初来源于希腊文中的 “παράδειγμα”(paradeigma),意为"范例"、“示范”。在语言学和哲学中,"范式"用来表示某种范例、模式或典型的例子。在科学和学术领域,"范式"通常用于表示一种理论框架、方法论或思考方式,这种方式在一定领域内成为一种标准或典型。科学研究中的范式不仅包括具体的理论和实践,还涉及到对问题的看法、解决途径以及知识的组织和传递方式。例如,在计算机科学领域,面向对象编程(OOP)和过程式编程就可以被看作是两种不同的编程范式。

2023-11-22 02:48:42 167

原创 高级算法复习

与动态规划区别:是否产生最优解;对应问题都具有最优子结构,但贪心算法要满足贪心选择性,动态规划满足重合子问题(overlapping subproblem)当一个问题的最优解包含其子问题的最优解时,称此问题具有最优子结构性质——最优子结构性质是该问题可用 动态规划算法 or 贪心算法 求解的关键特征。通过做出局部最优(贪婪)选择,可以得出全局最优解——这是贪心算法可行的第一个基本要素,也是贪心算法与动态规划算法的主要区别。黑高是高的一半: bh = h/2。2.父红叔不红----一定接3。

2023-11-10 14:10:53 164

原创 python数据类型&奇妙用法

array有shape和size,其中size是总大小,没有size()tensor有size()和shape,不需要用size。list没有shape。

2023-09-22 21:54:04 193

原创 Efficient Multimodal T ransformer with Dual-Level Feature Restoration for Robust..个人理解

MPU作用:使用G[0]和H[0]一层一层融合得到新的G和H。MPU具体:输入多模态的H和G进行MHCA和MHSA和FFN实现生成下一层的H和G,其中G[0]和H[0]是单独设置的,其他层的G和H是通过MPU数据组合得到。用最后一层MPU得到的h和g(g为flattenG[L]得出,维度为R。的BERT还没仔细看,但是不是直接写的[CLS]而是BERT输出的第一维数据)。为LSTM中的两个输出,好像没有联系,没有包含关系,h。),进行连接,输入MLP,得到预测的情绪强度y’。为BERT中的[CLS],h。

2023-06-12 15:22:07 560

原创 DICNet: Deep Instance-Level Contrastive Network for Double Incomplete Multi-View...个人解读

预处理后的输入:batch中,每个sample有效label的总和除以有效label数量,即平均label(即z)1.对batch数据每次取两组不同view特征,得2组(batch, label总数)的数据。4.连接2组数据,求sim_mat,得(2*有效数据, label总数)的sim矩阵。2.只保留2组中label都有效的,得2组(有效数据, label总数)的数据。-> (view_num, batch_size, label总数)(view_num, batch_size, label总数)

2023-06-05 22:56:41 551

原创 softmax,sigmoid,Batch Norm图片

截图来源:截图来源:

2023-06-05 22:33:30 187

原创 L1&L2,范数&损失

这里是有很大的区别的哦。而越小的参数说明模型越简单,越简单的模型则越不容易产生过拟合现象。为什么越小的参数说明模型越简单?一种理解是:“限制了参数很小,实际上就限制了多项式某些分量大小,使分量的影响很小,这样就相当于减少参数个数”。在回归里面,有人把有它的回归叫“岭回归”(Ridge Regression),有人也叫它“权值衰减weight decay”。L2范数强大功效是改善机器学习里面一个非常重要的问题:过拟合。它是把目标值y与估计值f(x)的差值的平方和最小化。,都接近于0,但与L1范数不同,

2023-05-23 20:52:59 3806

原创 论文总结+公式分析

1-2-1.总图。

2023-05-19 11:36:03 1016

原创 5.11组会衍生总结:train/eval/BN、CNN与特征图、极大似然与EM、方差n与n-1(有偏估计/无偏估计)

特征图即为通道,特征图数 = 通道数 = 每一层矩阵数 = 前一层filter数,特征图数一般写在每层输出大小的第3维(如上vgg图左 224 * 224 *64),写在convx-的后面(如图上vgg图右conv3-64),写在 @的前面(如图下8@28*28)上图来源一般图中,写的都是输出的维度,而不是filter(如vgg图左224 * 224 * 64),有可能写在开头(如上图6@28*28);一般表中,写的都是filter(如vgg图右conv3-64)。

2023-05-11 21:59:34 583

原创 vue-cli版本号始终是2.9.6,且无法删除,安装更新无效的问题。

(至于一开始为啥出错,我的原因应该是vue没删干净,我删了vue.cmd/vue中的其中一个,但是应该是要同时删除所有才行。总结:删除原脚手架&删除原vue+vue.cmd,修改环境变量path,然后安装新的。发现有4个原来的,于是我先删除了原有的vue和vue.cmd的后两个。(这后两个的来源是,我在环境变量path里增加了。路径,并且提到了path最上面,就有了),删除了剩下的vue和vue.cmd。发现有了新的vue和vue.cmd。看版本发现已经没有vue了。看版本发现还是2.9.6。

2023-04-20 21:27:34 1765 3

原创 前后端目前进展

项目特点:配置在build和config文件夹下,很多配置文件,很繁琐且看不懂,比如跨域配置proxyTable在。这个项目本来是用来复盘的,结果发现卡在上面的错误所以复盘不出来。文件中,jquery配置plugins在。(前端创建方式/流程详细见我的博客。(只能创建vue2)

2023-04-20 12:20:41 758

原创 (NCR)NeurIPS-2021-learning-with-noisy-correspondence-for-cross-modal-matching-Paper

A/B网络:包含f,g,S三个网络。f/g将I/T embeding到同一维度,S网络计算(f(I),g(T))对的相似度得S(f(I),g(T)),简写为S(I,T)原图中用S表示数据集,由于在文中S也表示相似度,所以我改成D了,方便讲解。要解决的问题:识别False Positive,并尽可能找到最佳配对。左边是文章原图,右边是我自己补充了一些细节后的图。这是原文网络,之后会拆开讲。

2023-04-07 12:13:39 305

原创 NCR213

对于左边式子进行解读,其中α为margin取定值0.2,S(I,T)为该对img-caption pair的相似度,S(I,T_hat)为该img与其他不匹配的caption的相似度,求和下标是所有与img不匹配的caption,所以含义是,(0.2的margin+img与不匹配的caption的相似度-img与匹配caption的相似度)以遍历所有不匹配的caption为求和条件。通过yni-hat =(PA(Ini,Tni)+PB(Ini,Tni))/2公式算新y(targets_u)

2023-04-03 03:38:32 184

原创 MSCOCO数据集下载安装---image_caption(内涵报错)

在linux上。

2023-03-24 23:41:32 801

原创 在vue2中使用ajax或者是axios与django后端通信(前后端分离+跨域)

ajax使用jquery封装的axios使用自定义的与此同时如果是前后端分离的话,则还要配置代理服务器才能跨域关于什么是跨域

2023-03-20 11:33:02 948

原创 在新的vue2项目中配置jquery

安装后,内容会出现在node_modules 文件夹和 package-lock.json文件(里面记录了express中的内容下载的地址、版本等等)中。npm不用单独安装,安装完node,npm默认就安装好了。本地安装的都是能够直接使用的模块,他们不是命令,是类似于 fs 等可以通过 require() 加载的模块。Node安装过后,就可以使用一些模块,比如fs、path、http,这些是第三方库,不是官方写的。全局安装的一般都是命令,所以全局安装的模块,在任何文件夹都可以调用这个命令。

2023-03-20 00:03:57 2016

原创 vue2项目建立

这样npm install -g就会安装在D:\software\nvm\nodejs\node_global\node_modules中。npm install vue-cli -g和npm install -g @vue/cli-init有什么区别。下载的东西都在D:\software\nvm\nodejs\node_global\node_modules中。D:\software\nvm\nodejs\node_modules\vue-cli路径中。3-1.全局安装脚手架vue-cli。

2023-03-15 14:26:34 467

原创 一些复盘与学习

vue的使用1.关于查看某执行程序的路径,比如node,npm,python等,可以使用where 命令,比如where nodewhere npmwhere python在我的电脑中但where只是执行程序的路径而不是系统/用户环境变量中的路径。路径的作用:比如对于nodenpm install express [-g] (后面的可选参数-g,g代表global全局安装的意思)的安装语句时,会将安装的模块安装到路径下2.关于有多个应用程序的路径在控制台下用where命令查询应用的路

2023-03-15 13:37:44 136

原创 vue2前端和django后端上传文件和下载文件(分别是mp4和gif)

那么读的文件路径为(back)/face_output.gif(与manage.py同目路径,而不与app/view.py同路径)因为django框架运行起来的命令是python manage.py runserver。我的django后端项目的文件夹叫back,manage.py在该目录下。若在app/view.py中读取face_output.gif文件。使用python manage.py runserver运行后端。所以文件读取都以manage.py的路径为路径。

2023-03-12 11:41:11 1199

原创 linux用conda配置自己的python3环境

在安装无需向anaconda目录写入内容的包时,可以通过配置环境变量使用,即在.bahsrc中添加路径即可。(官方文档写的export PATH=/opt/app/anaconda3/bin:$PATH,实际没有,所以要灵活应变)新的环境以及环境内的包会被安装到/home/yourname/.conda/envs/目录下。编辑路径,在脚本末尾添加export PATH=/opt/conda/bin:$PATH。即安装在环境中的包名。退出环境后,会切换至base环境。

2023-03-06 16:32:48 1150

原创 Linux联网----处理ping无法使用的问题

原因是:bash: ping: command not found的主要原因是,当前环境下载Centos基础镜像只包含简单的操作系统,相当于裸机状态,要想用别的命令需要手动安装。换这个是因为sudo apt-get update报错。于是计划换security源,结果把所有源都换了。2-1-1.换源(修改sources.list)就可以ping www.baidu.com了。2-2-2.阿里云:(步骤参考上面)换这个是因为换了才可以联网?ctrl+shift+v 粘贴。2-1-2.在vi界面。

2023-03-06 11:13:35 2085

原创 vue2前端报错Redirect is not allowed for a preflight request.

改完后问题变成:No ‘Access-Control-Allow-Origin’ header is present on the requested resource.问题:Redirect is not allowed for a preflight request.为什么是重定向出错呢,这个问题一般出在前端的网址设置。网上一般是http和https弄混的问题。这里t1后面加一个/就可以了,变成。我用的是django,问题出在。预检请求不允许重定向。

2023-03-04 11:11:59 1274

原创 linux的root与用户改密码,以及gpu的ssh连接步骤

用sudo passwd和sudo passwd root都是改root密码,用passwd或passwd 用户名 改的是用户密码。(然后输入root密码,可能是)(然后输入用户密码,可能是)

2023-02-27 17:11:18 358

原创 vscode免密远程连接(linux)

2.将本地公钥加入虚拟机的authorized_keys。1.先生成本地公钥,一路回车或者选确定。都在windows的cmd中输入。3.检查是否可以免密。

2023-01-27 23:44:53 289

原创 For recursive components, make sure to provide the “name“ option.-Vue全局组件报错

为啥呢,因为。

2023-01-03 11:24:14 113

原创 我的人才网android开发总结

感谢我的同事

2022-12-02 22:10:25 422

原创 一些python的常识用法

1.list或array中for和if的用法。

2022-11-27 10:45:30 314

原创 bishe

make_source对应test:test_img,test_label_ori,test_head_ori,pose_source.npy。make_target对应train:train_img,train_label,head_img,pose.npy。

2022-11-21 19:12:13 294

原创 人工智能-深度学习-的框架

循环神经网络RNN和cyclegan不是一个东西。

2022-11-07 16:50:25 899

原创 Dual Contrastive Prediction for Incomplete Multi-view Representation Learning个人学习2

②让图片经过Autoencoder网络编码,并由Prediction网络做RGB转Depth或D转R后,数据更相似 -> dualprediction_loss双重预测损失。②Prediction:编码+解码 = forward:将autoencoder中间维度的信息,由RGB转为Depth(或D到R)①让图片经过Autoencoder网络编码解码后,数据基本不变 -> reconstruction_loss重构损失。④让同一类的Z1,Z2更相似 -> instance_contrastive_Loss。

2022-10-23 01:52:06 615 2

原创 BeautyGAN图片的高精度美颜

3.生成器:左边的生成模型G,首先素颜图像和参考图像经过不同的两组卷积提取特征,然后concatenate到一起,输入residual block中,接着两组反卷积将输出的feature map上采样,结果是将原来的素颜图像“上妆”,而参考图像“卸妆”。https://blog.csdn.net/wrk226/article/details/123256887(这个博客提供的连接里,有论文附件,附件中有G和D的网络结构表)损失函数:D()好像是判别器的输出。

2022-10-21 20:41:12 708

原创 Dual Contrastive Prediction for Incomplete Multi-view Representation Learning个人学习

问题:我们提出了一个统一的框架(unified framework)来解决不完全多视图表示学习(incomplete multi-view representation learning)中的以下两个挑战性问题:i)如何学习统一不同视图的一致表示(a consistent representation unifying different views),ii)如何恢复丢失的视图。

2022-09-27 00:41:50 966 3

原创 attention is all your need个人学习

Scaled Dot-Product Attention的输入query和key等长,维度为dk,value维度为dv,计算query和所有key的点积/内积(dot product)除以dk^(1/2),然后再用softmax得到n个非负的且加起来等于1的权重(?但一般用3D,样本batch-序列长度sequence-词向量feature(我认为元素是:句子-词-字母)sequence的长之前的N,feature的长为之前的d-model。关于mask:在注意力机制里,每次能看到一个完整的输入。

2022-09-24 10:55:56 85

原创 Ubuntu学习记录

su root进入root。

2022-09-24 10:54:12 306

原创 Learning with Noisy Correspondence for Cross-modal Matching个人笔记

背景:多模态匹配,在不同模型间建立对应关系,已经应用于跨模态检索(retrieval)和vision-and -language understanding问题:以往方法都假设多模态训练数据是对齐的,但实际不是,且代价很高(这里对齐的意思应该是总有匹配的对象和label?)

2022-09-24 10:28:06 629 4

原创 【无标题】

数据库课程记录

2022-09-05 20:51:16 162

原创 虚拟机记录

虚拟机和vscode连通需要配置远程1.debian虚拟机配置两个网卡,第二个是host-only开启虚拟机看网卡2的ip地址(输入ip addr)虚拟机无法连通外网怎么办:https://blog.csdn.net/xc_zhou/article/details/88316310不会使用vim添加,就用cat:https://blog.csdn.net/zyt_2018/article/details/107573436...

2022-05-10 13:57:15 255

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除