【CVPR2024】文本到图像的行人再识别中的噪声对应学习

论文《Noisy-Correspondence Learning for Text-to-Image Person Re-identification》提出了鲁棒双嵌入(RDE)方法,解决跨模态行人再识别中的噪声对应问题。通过Confident Consensus Division(CCD)和Triplet Alignment Loss(TAL),RDE在三个数据集上实现最佳性能,展示其在处理噪声数据时的优越性和稳定性。
摘要由CSDN通过智能技术生成

这篇论文的标题是《Noisy-Correspondence Learning for Text-to-Image Person Re-identification》,作者是来自中国四川大学、英国诺森比亚大学、新加坡A*STAR前沿人工智能研究中心和高性能计算研究所的研究人员。论文主要研究了文本到图像的行人再识别(Text-to-Image Person Re-identification, TIReID)问题,这是一个在跨模态领域中具有挑战性的话题,目标是基于文本查询检索目标人物的图像。
在这里插入图片描述

主要贡献和创新点:

  1. 问题揭示:论文揭示了TIReID中的一个新的普遍问题,即噪声对应(Noisy Correspondence, NC)。与类别级别的噪声标签不同,NC指的是图像-文本对中的错误的对应关系,这可能会误导模型学习错误的视听语义关联。

  2. 鲁棒方法:提出了一种名为鲁棒双嵌入(Robust Dual Embedding, RDE)的方法,通过提出的Confident Consensus Division (CCD)机制和新颖的Triplet Alignme

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

深研 AI Lab

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值