这篇论文的标题是《Noisy-Correspondence Learning for Text-to-Image Person Re-identification》,作者是来自中国四川大学、英国诺森比亚大学、新加坡A*STAR前沿人工智能研究中心和高性能计算研究所的研究人员。论文主要研究了文本到图像的行人再识别(Text-to-Image Person Re-identification, TIReID)问题,这是一个在跨模态领域中具有挑战性的话题,目标是基于文本查询检索目标人物的图像。

主要贡献和创新点:
-
问题揭示:论文揭示了TIReID中的一个新的普遍问题,即噪声对应(Noisy Correspondence, NC)。与类别级别的噪声标签不同,NC指的是图像-文本对中的错误的对应关系,这可能会误导模型学习错误的视听语义关联。
-
鲁棒方法:提出了一种名为鲁棒双嵌入(Robust Dual Embedding, RDE)的方法,通过提出的Confident Consensus Division (CCD)机制和新颖的Triplet Alignme

论文《Noisy-Correspondence Learning for Text-to-Image Person Re-identification》提出了鲁棒双嵌入(RDE)方法,解决跨模态行人再识别中的噪声对应问题。通过Confident Consensus Division(CCD)和Triplet Alignment Loss(TAL),RDE在三个数据集上实现最佳性能,展示其在处理噪声数据时的优越性和稳定性。
订阅专栏 解锁全文
305

被折叠的 条评论
为什么被折叠?



