stone [期望]

也许更好的阅读体验

D e s c r i p t i o n \mathcal{Description} Description

n n n 堆石子,依次编号为 1 , 2 , … , n 1, 2,\ldots , n 1,2,,n,其中第 i i i 堆有 a i a_i ai 颗石子
你每次等概率随机选择一颗石子,并取完它所在的那一堆石子
求第 1 1 1 堆石子被取走的时间的期望

n ≤ 1 0 5 , a i ≤ 1 0 9 n\leq 10^5,a_i\leq 10^9 n105,ai109

S o l u t i o n \mathcal{Solution} Solution

这题不是很难,然而并不是考虑 D P DP DP,用的比较巧妙的方法
考虑期望的线性性,设 p i p_i pi表示第 i i i堆石子在第一堆石子前
若第 i i i堆石子在第 1 1 1堆石子前被取出来,那么就会多 1 1 1次取走操作
换成期望就是 E = ∑ i = 2 n p i ∗ 1 E=\sum\limits_{i=2}^np_i*1 E=i=2npi1

现在的问题就是求 p i p_i pi
考虑第 i i i堆石子在第 1 1 1堆石子之前被取走
假设现在有 t o t tot tot个石子,那么取走 i i i的概率是 a i t o t \dfrac{a_i}{tot} totai,取走 1 1 1的概率是 a 1 t o t \dfrac{a_1}{tot} tota1
无论 t o t tot tot的值是什么,第 i i i堆石子比第 1 1 1堆石子先被取走的概率都是 a i a i + a 1 \dfrac{a_i}{a_i+a_1} ai+a1ai
于是这道题就解决了

C o d e \mathcal{Code} Code

/*******************************
Author:Morning_Glory
LANG:C++
Created Time:2019年11月07日 星期四 20时01分34秒
*******************************/
#include <cstdio>
#include <fstream>
using namespace std;
const int maxn = 100005;
int n,x;
double ans;
int main()
{
	scanf("%d%d",&n,&x);
	for (int i=2;i<=n;++i){
		int p;
		scanf("%d",&p);
		ans+=1.0*p/(x+p);
	}
	ans+=1;
	printf("%.10lf\n",ans);
	return 0;
}

如有哪里讲得不是很明白或是有错误,欢迎指正
如您喜欢的话不妨点个赞收藏一下吧

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值