序列方差[NTT]

20 篇文章 0 订阅
3 篇文章 1 订阅

也许更好的阅读体验

D e s c r i p t i o n \mathcal{Description} Description

给你一个长度为 n n n的数组 a a a
你会得到 q q q 条指令, 分两种:

  • 1   l   r   w 1\ l\ r\ w 1 l r w 表示把 l , l + 1 , … r l, l + 1,\ldots r l,l+1,r 这段区间的每一个数 + w +w +w.
  • 2   l   r 2\ l\ r 2 l r 表示询问 l , l + 1 , … r l, l + 1, \ldots r l,l+1,r 这段区间每个子序列方差之和.

对于每个询问输出一行表示答案
答案对 998244353 998244353 998244353取模
n , q ≤ 1 0 5 0 ≤ a i , w < 998244353 n,q\leq 10^5\\ 0\leq a_i,w<998244353 n,q1050ai,w<998244353

S o l u t i o n \mathcal{Solution} Solution

方差的定义
对一个序列 a 1 , a 2 , … , a n a_1,a_2,\ldots,a_n a1,a2,,an,设其平均数为 a ‾ = ∑ a i n \overline a=\dfrac{\sum\limits a_i}{n} a=nai,方差 s 2 = ∑ ( a i − a ‾ ) 2 n s^2=\dfrac{\sum\limits \left(a_i-\overline a\right)^2}{n} s2=n(aia)2

前置知识
( a 1 + a 2 + … + a n ) 2 = a 1 2 + a 2 2 + … + a n 2 + 2 ∑ i ! = j a i a j \left(a_1+a_2+\ldots+a_n\right)^2=a_1^2+a_2^2+\ldots+a_n^2+2\sum\limits_{i!=j} a_ia_j (a1+a2++an)2=a12+a22++an2+2i!=jaiaj

s 2 = ∑ ( a i − a ‾ ) 2 n = ∑ ( a i 2 − 2 a i a ‾ + a ‾ 2 ) n = ∑ a i 2 − 2 n a ‾ 2 + n a ‾ n = ∑ a i 2 − n a ‾ 2 n = ∑ a i 2 − ∑ a i 2 + 2 ∑ i ! = j a i a j n n s^2=\dfrac{\sum\limits \left(a_i-\overline a\right)^2}{n}=\dfrac{\sum \left(a_i^2-2a_i\overline a+\overline a^2\right)}{n}=\dfrac{\sum a_i^2-2n\overline a^2+n\overline a}{n}=\dfrac{\sum a_i^2-n\overline a^2}{n}=\dfrac{\sum a_i^2-\dfrac{\sum a_i^2+2\sum\limits_{i!=j}a_ia_j}{n}}{n} s2=n(aia)2=n(ai22aia+a2)=nai22na2+na=nai2na2=nai2nai2+2i!=jaiaj
把式子提出来重写一遍

s 2 = ∑ a i 2 − ∑ a i 2 + 2 ∑ i ! = j a i a j n n s^2=\dfrac{\sum a_i^2-\dfrac{\sum a_i^2+2\sum\limits_{i!=j}a_ia_j}{n}}{n} s2=nai2nai2+2i!=jaiaj
于是可以计算上面的 a i , a i a j a_i,a_ia_j ai,aiaj出现次数(贡献的系数),考虑一个长度为 n n n的区间,其子序列长度可以是 l e n = 1 , 2 , … , n len=1,2,\ldots,n len=1,2,,n
考虑 a i a_i ai一定被选,剩下 n − 1 n-1 n1个数中要选 l e n − 1 len-1 len1个数出来,类似这样考虑即可
显然对于每个区间内的数,其系数是一样的
f n f_n fn表示长度为 n n n的区间里的 a i 2 a_i^2 ai2的系数
则有
f n = ∑ i = 1 n ( n − 1 i − 1 ) 1 − 1 i i = ∑ i = 1 n ( n − 1 i − 1 ) i − 1 i 2 = ∑ i = 1 n ( n − 1 ) !   ( i − 1 ) ( n − i ) ! ( i − 1 ) !   i 2 = ( n − 1 ) ! ∑ i = 1 n 1 ( n − i ) ! ( i − 2 ) ! i 2 = ( n − 1 ) ! ∑ i + j = n n 1 ( i − 2 ) ! i 2 1 j ! \begin{aligned}f_n&=\sum\limits_{i=1}^n\begin{pmatrix}n-1\\i-1\end{pmatrix}\dfrac{1-\dfrac{1}{i}}{i}\\ &=\sum\limits_{i=1}^n\begin{pmatrix}n-1\\i-1\end{pmatrix}\dfrac{i-1}{i^2}\\&= \sum\limits_{i=1}^n\dfrac{\left(n-1\right)!\ \left(i-1\right)}{\left(n-i\right)!\left(i-1\right)!\ i^2}\\&=\left(n-1\right)!\sum\limits_{i=1}^n\dfrac{1}{\left(n-i\right)!\left(i-2\right)!i^2}\\&=\left(n-1\right)!\sum\limits_{i+j=n}^n\dfrac{1}{\left(i-2\right)!i^2}\dfrac{1}{j!}\end{aligned} fn=i=1n(n1i1)i1i1=i=1n(n1i1)i2i1=i=1n(ni)!(i1)! i2(n1)! (i1)=(n1)!i=1n(ni)!(i2)!i21=(n1)!i+j=nn(i2)!i21j!1
注意最后 i ≥ 2 i\geq 2 i2
可以发现这是一个卷积的形式,可以 n l o g n nlogn nlogn算出来

g n g_n gn表示长度为 n n n的区间里的 2 a i a j 2a_ia_j 2aiaj的系数
则有
g n = ∑ i = 2 n ( n − 2 i − 2 ) − 1 i 2 g_n=\sum\limits_{i=2}^n\begin{pmatrix}n-2\\i-2\end{pmatrix}\dfrac{-1}{i^2} gn=i=2n(n2i2)i21
同理可推得
g n = − ( n − 2 ) ! ∑ i + j = n n 1 ( i − 2 ) ! i 2 1 j ! g_n=-\left(n-2\right)!\sum\limits_{i+j=n}^n\dfrac{1}{\left(i-2\right)!i^2}\dfrac{1}{j!} gn=(n2)!i+j=nn(i2)!i21j!1
注意 i ≥ 2 i\geq 2 i2
f n , g n f_n,g_n fn,gn只有前面的系数不同,把后面弄出来即可

另外,对于一个区间,用线段树维护维护一下 ∑ a i \sum a_i ai ∑ a i 2 \sum a_i^2 ai2
C o d e \mathcal{Code} Code

/*******************************
Author:Morning_Glory
LANG:C++
Created Time:2019年10月03日 星期四 09时36分57秒
*******************************/
#include <cstdio>
#include <fstream>
using namespace std;
const int maxn = 1000006;
const int maxt = 1000006;
const int mod = 998244353;
const int gn = 3;
//{{{cin
struct IO{
	template<typename T>
	IO & operator>>(T&res){
		res=0;
		bool flag=false;
		char ch;
		while((ch=getchar())>'9'||ch<'0')	flag|=ch=='-';
		while(ch>='0'&&ch<='9')	res=(res<<1)+(res<<3)+(ch^'0'),ch=getchar();
		if (flag)	res=~res+1;
		return *this;
	}
}cin;
//}}}
inline int add (int &x,int y){	return x=((x+y)%mod+mod)%mod;}
inline int mul (int x,int y){	return 1ll*x*y%mod;}
int n,q,id,ans;
int a[maxn],rev[maxn],inv[maxn],fac[maxn],ifac[maxn];
int f[maxn],g[maxn];
//{{{SegmentTree
struct SegmentTree{
	//0 -> x^2
	//1 -> x
	//{{{defination
	#define cl (k<<1)
	#define cr (k<<1|1)
	#define lm (lt[k]+rt[k])/2
	#define rm (lt[k]+rt[k])/2+1
	#define val0(x) val[x][0]
	#define val1(x) val[x][1]
	#define lazy0(x) lazy[x][0]
	#define lazy1(x) lazy[x][1]
	#define len(x) (rt[x]-lt[x]+1)
	int lt[maxt],rt[maxt],val[maxt][2],lazy[maxt][2];
	//}}}
	//{{{build
	void build (int l,int r,int k=1)
	{
		lt[k]=l,rt[k]=r;
		if (l==r)	return val0(k)=mul(a[l],a[l]),val1(k)=a[l],void();
		build(l,lm,cl);
		build(rm,r,cr);
		val0(k)=(val0(cl)+val0(cr))%mod;
		val1(k)=(val1(cl)+val1(cr))%mod;
	}
	//}}}
	//{{{pushdowna
	void pushdowna (const int &k)
	{
		add(lazy1(cl),lazy1(k));
		add(lazy1(cr),lazy1(k));
		add(val1(cl),mul(len(cl),lazy1(k)));
		add(val1(cr),mul(len(cr),lazy1(k)));
		lazy1(k)=0;
	}
	//}}}
	//{{{pushdowns
	void pushdowns (const int &k)
	{
		add(lazy0(cl),lazy0(k));
		add(lazy0(cr),lazy0(k));
		add(val0(cl),mul(len(cl),mul(lazy0(k),lazy0(k))));
		add(val0(cr),mul(len(cr),mul(lazy0(k),lazy0(k))));
		add(val0(cl),mul(mul(lazy0(k),2),val1(cl)));
		add(val0(cr),mul(mul(lazy0(k),2),val1(cr)));
		lazy0(k)=0;
	}
	//}}}
	//{{{modifys
	void modifys (const int l,const int r,const int v,const int &k=1)
	{
		if (lt[k]>=l&&rt[k]<=r){
			add(val0(k),mul(len(k),mul(v,v)));
			add(val0(k),mul(mul(v,2),val1(k)));
			add(lazy0(k),v);
			return;
		}
		if (lazy0(k))	pushdowns(k);
		if (lazy1(k))	pushdowna(k);
		if (lm>=l)	modifys(l,r,v,cl);
		if (rm<=r)	modifys(l,r,v,cr);
		val0(k)=(val0(cl)+val0(cr))%mod;
		val1(k)=(val1(cl)+val1(cr))%mod;
	}
	//}}}
	//{{{modifya
	void modifya (const int &l,const int &r,const int &v,const int &k=1)
	{
		if (lt[k]>=l&&rt[k]<=r){
			add(val1(k),mul(len(k),v));
			add(lazy1(k),v);
			return;
		}
		if (lazy0(k))	pushdowns(k);
		if (lazy1(k))	pushdowna(k);
		if (lm>=l)	modifya(l,r,v,cl);
		if (rm<=r)	modifya(l,r,v,cr);
		val0(k)=(val0(cl)+val0(cr))%mod;
		val1(k)=(val1(cl)+val1(cr))%mod;
	}
	//}}}
	//{{{query
	int query (const int l,const int r,const bool opt,const int &k=1)
	{
		if (lt[k]>=l&&rt[k]<=r)	return val[k][opt];
		if (lazy0(k))	pushdowns(k);
		if (lazy1(k))	pushdowna(k);
		int res=0;
		if (lm>=l)	add(res,query(l,r,opt,cl));
		if (rm<=r)	add(res,query(l,r,opt,cr));
		return res;
	}
	//}}}
}ST;
//}}}
//{{{ksm
int ksm (int a,int b)
{
	int s=1;
	for (;b;b>>=1,a=1ll*a*a%mod)
		if (b&1)	s=1ll*s*a%mod;
	return s;
}
//}}}
//{{{get_rev
int get_rev (int len)//the maximum power of x is len!!!! not the length
{
	int lim=1,bit=0;
	while (lim<=len)	lim<<=1,++bit;
	for (int i=0;i<lim;++i)	rev[i]=(rev[i>>1]>>1)|((i&1)<<(bit-1));
	return lim;
}
//}}}
//{{{NTT
void NTT (int *a,int len,int type)
{
	for (int i=0;i<=len-1;++i)
		if (i<rev[i])	swap(a[i],a[rev[i]]);
	for (int i=1;i<len;i<<=1){
		int wn=ksm(gn,(mod-1)/(i*2));
		if (type==-1)	wn=ksm(wn,mod-2);
		for (int j=0;j<len;j+=(i<<1)){
			int w=1;
			for (int k=0;k<i;++k){
				int u=a[j+k],t=1ll*w*a[j+k+i]%mod;
				a[j+k]=1ll*(u+t)%mod;
				a[j+k+i]=1ll*(u-t+mod)%mod;
				w=1ll*w*wn%mod;
			}
		}
	}
	if (type==-1){
		int inv=ksm(len,mod-2);
		for (int i=0;i<=len-1;++i)	a[i]=1ll*a[i]*inv%mod;
	}
}
//}}}
//{{{init
void init ()
{
	fac[0]=ifac[0]=inv[1]=1;
	for (int i=2;i<=n+2;++i)	inv[i]=(-1ll*mod/i*inv[mod%i]%mod+mod)%mod;
	for (int i=1;i<=n+2;++i){
		fac[i]=mul(fac[i-1],i);
		ifac[i]=mul(ifac[i-1],inv[i]);
	}
	for (int i=0;i<=n;++i){
		f[i]=ifac[i];
		g[i]=i<=1?0:mul(mul(inv[i],inv[i]),ifac[i-2]);
	}
	int len=get_rev(n<<1);
	NTT(f,len,1),NTT(g,len,1);
	for (int i=0;i<len;++i)	f[i]=mul(f[i],g[i]);
	NTT(f,len,-1);
	for (int i=0;i<=n;++i){
		g[i]=0;
		if (i>1)	add(g[i],-mul(fac[i-2],f[i])),f[i]=mul(fac[i-1],f[i]);
	}
}
//}}}
int main ()
{
	cin>>n>>q>>id;
	for (int i=1;i<=n;++i)	cin>>a[i];
	init();
	ST.build(1,n);
	while (q--){
		int opt,l,r;
		cin>>opt>>l>>r;
		if (opt==1){
			int x;
			cin>>x;
			ST.modifys(l,r,x);
			ST.modifya(l,r,x);
		}
		else{
			int s1=ST.query(l,r,0),s2=ST.query(l,r,1),len=r-l+1;
			s2=mul(s2,s2);
			add(s2,-s1);
			int ans1=mul(s1,f[len]),ans2=mul(s2,g[len]);
			add(ans1,ans2);
			printf("%d\n",ans1);
		}
	}
	return 0;
}

如有哪里讲得不是很明白或是有错误,欢迎指正
如您喜欢的话不妨点个赞收藏一下吧

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值