八皇后问题的回溯搜索算法

八皇后问题的回溯搜索算法

原理:

八皇后问题是一个经典的问题,要求在8×8的国际象棋棋盘上放置8个皇后,使得彼此之间无法互相攻击,即任意两个皇后都不能处于同一行、同一列或同一斜线上。这个问题可以通过回溯搜索算法来解决。

回溯搜索算法的基本思想是:在搜索过程中,每次都做出一个选择,然后继续搜索;如果当前选择导致问题无法解决,就回溯到上一个状态,尝试其他选择,直到找到问题的解或者确定无解为止。

过程:

  1. 初始化棋盘和标记数组:定义一个8×8的棋盘,使用数组表示每个格子的状态,同时使用三个数组b、c、d分别表示每一列、主对角线和副对角线上是否已经放置了皇后。
  2. 编写回溯搜索函数searchh(int i):该函数用于递归搜索合法的皇后放置方案。在搜索过程中,对于每一个皇后的位置,检查该位置是否合法,若合法则继续向下搜索,否则回溯到上一个状态。当放置完所有皇后后,累加计数器sum,表示找到了一个合法的解。
  3. 调用搜索函数并输出结果:在主函数中调用searchh函数,并输出最终的解法数量sum。

代码

#include<iostream>
using namespace std;
int a[9];
int b[9]={0};
int c[16]={0};
int d[16]={0};
int sum=0;

void searchh(int i)
{
    for(int j=1;j<=8;j++)
    {
        if((!b[j])&&(!c[i+j])&&(!d[i-j+7]))//每个皇后都有八个位置(列)可以试放
        {
            /********** Begin **********/
            if(i==8){
                sum++;
                return;
            }
            b[j]=1;			//列
            c[i+j]=1;		//主对角线
            d[i-j+7]=1;		//副对角线
            searchh(i+1);
            b[j]=0;
            c[i+j]=0;
            d[i-j+7]=0;
            /********** End **********/
        }
    }
}

在八皇后问题中,我们需要检查每一行、每一列以及每一条主对角线和副对角线上是否已经放置了皇后。为了实现这一点,我们可以使用三个辅助数组:

  1. 数组b:用于检查每一列是否已经放置了皇后。
  2. 数组c:用于检查每一条主对角线上是否已经放置了皇后。
  3. 数组d:用于检查每一条副对角线上是否已经放置了皇后。
  • 数组b:

    • 数组b是一个长度为8的布尔数组,索引从1到8,表示棋盘的每一列。如果b[j]为true,则表示第j列已经放置了皇后;否则,表示第j列还未放置皇后。

    • 在检查某一列是否可以放置皇后时,只需要检查b[j]是否为false即可。如果b[j]为false,则表示第j列还未放置皇后,可以放置皇后;否则,表示第j列已经放置了皇后,不能再放置。

  • 数组c:

    • 数组c是一个长度为15的布尔数组,索引从2到16,表示棋盘的主对角线。主对角线上的每个格子的横纵坐标之和是一个固定的值,范围从2到16,共有15条主对角线。

    • 在检查某个位置(i, j)是否可以放置皇后时,只需要检查c[i+j]是否为false即可。如果c[i+j]为false,则表示(i, j)处的主对角线还未放置皇后,可以放置皇后;否则,表示(i, j)处的主对角线已经放置了皇后,不能再放置。

  • 数组d:

    • 数组d是一个长度为15的布尔数组,索引从0到14,表示棋盘的副对角线。副对角线上的每个格子的横纵坐标之差是一个固定的值,范围从-7到7,共有15条副对角线。

    • 在检查某个位置(i, j)是否可以放置皇后时,只需要检查d[i-j+7]是否为false即可。如果d[i-j+7]为false,则表示(i, j)处的副对角线还未放置皇后,可以放置皇后;否则,表示(i, j)处的副对角线已经放置了皇后,不能再放置。

通过以上参数检查,我们可以确保在搜索皇后放置位置的过程中,不会出现多个皇后处于同一列、同一条主对角线或同一条副对角线的情况,从而保证了每一次的放置都是合法的。

分析:

经过搜索算法的运算,得到八皇后问题共有92种合法的解法。这些解法分别是将8个皇后放置在棋盘上不同的位置,使得彼此之间不会互相攻击。八皇后问题是一个经典的组合问题,通过回溯搜索算法可以高效地求解出所有的合法解,这展示了回溯算法在组合优化问题中的强大应用能力。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值