【现代深度学习技术】现代循环神经网络08:束搜索

在这里插入图片描述

【作者主页】Francek Chen
【专栏介绍】 ⌈ ⌈ PyTorch深度学习 ⌋ ⌋ 深度学习 (DL, Deep Learning) 特指基于深层神经网络模型和方法的机器学习。它是在统计机器学习、人工神经网络等算法模型基础上,结合当代大数据和大算力的发展而发展出来的。深度学习最重要的技术特征是具有自动提取特征的能力。神经网络算法、算力和数据是开展深度学习的三要素。深度学习在计算机视觉、自然语言处理、多模态数据分析、科学探索等领域都取得了很多成果。本专栏介绍基于PyTorch的深度学习算法实现。
【GitCode】专栏资源保存在我的GitCode仓库:https://gitcode.com/Morse_Chen/PyTorch_deep_learning


  在序列到序列学习(seq2seq)中,我们逐个预测输出序列,直到预测序列中出现特定的序列结束词元'<eos>'。本节将首先介绍贪心搜索(greedy search)策略,并探讨其存在的问题,然后对比其他替代策略:穷举搜索(exhaustive search)和束搜索(beam search)。

  在正式介绍贪心搜索之前,我们使用与序列到序列学习(seq2seq)中相同的数学符号定义搜索问题。在任意时间步 t ′ t' t,解码器输出 y t ′ y_{t'} yt的概率取决于时间步 t ′ t' t之前的输出子序列 y 1 , … , y t ′ − 1 y_1, \ldots, y_{t'-1} y1,,yt1和对输入序列的信息进行编码得到的上下文变量 c \mathbf{c} c。为了量化计算代价,用 Y \mathcal{Y} Y表示输出词表,其中包含'<eos>',所以这个词汇集合的基数 ∣ Y ∣ \left|\mathcal{Y}\right| Y就是词表的大小。我们还将输出序列的最大词元数指定为 T ′ T' T。因此,我们的目标是从所有 O ( ∣ Y ∣ T ′ ) \mathcal{O}(\left|\mathcal{Y}\right|^{T'}) O(YT)个可能的输出序列中寻找理想的输出。当然,对于所有输出序列,在'<eos>'之后的部分(非本句)将在实际输出中丢弃。

一、贪心搜索

  首先,让我们看看一个简单的策略:贪心搜索,该策略已用于序列到序列学习(seq2seq)的序列预测。对于输出序列的每一时间步 t ′ t' t,我们都将基于贪心搜索从 Y \mathcal{Y} Y中找到具有最高条件概率的词元,即
y t ′ = argmax ⁡ y ∈ Y P ( y ∣ y 1 , … , y t ′ − 1 , c ) (1) y_{t'} = \operatorname*{argmax}_{y \in \mathcal{Y}} P(y \mid y_1, \ldots, y_{t'-1}, \mathbf{c}) \tag{1} yt=yYargmaxP(yy1,,yt1,c)(1) 一旦输出序列包含了'<eos>'或者达到其最大长度 T ′ T' T,则输出完成。

在这里插入图片描述

图1 在每个时间步,贪心搜索选择具有最高条件概率的词元

  如图1中,假设输出中有四个词元'A''B''C''<eos>'。每个时间步下的四个数字分别表示在该时间步生成'A''B''C''<eos>'的条件概率。在每个时间步,贪心搜索选择具有最高条件概率的词元。因此,将在图1中预测输出序列'A', 'B', 'C', '<eos>'。这个输出序列的条件概率是 0.5 × 0.4 × 0.4 × 0.6 = 0.048 0.5\times0.4\times0.4\times0.6 = 0.048 0.5×0.4×0.4×0.6=0.048

  那么贪心搜索存在的问题是什么呢?现实中,最优序列(optimal sequence)应该是最大化 ∏ t ′ = 1 T ′ P ( y t ′ ∣ y 1 , … , y t ′ − 1 , c ) \prod_{t'=1}^{T'} P(y_{t'} \mid y_1, \ldots, y_{t'-1}, \mathbf{c}) t=1TP(yty1,,yt1,c)值的输出序列,这是基于输入序列生成输出序列的条件概率。然而,贪心搜索无法保证得到最优序列。

在这里插入图片描述

图2 在时间步2,选择具有第二高条件概率的词元“C”(而非最高条件概率的词元)

  图2中的另一个例子阐述了这个问题。与图1不同,在时间步 2 2 2中,我们选择图2中的词元'C',它具有第二高的条件概率。由于时间步 3 3 3所基于的时间步 1 1 1 2 2 2处的输出子序列已从图1中的'A''B'改变为图2中的'A''C',因此时间步 3 3 3处的每个词元的条件概率也在图2中改变。假设我们在时间步 3 3 3选择词元'B',于是当前的时间步 4 4 4基于前三个时间步的输出子序列'A', 'C''B'为条件,这与图1中的'A''B''C'不同。因此,在图2中的时间步 4 4 4生成每个词元的条件概率也不同于图1中的条件概率。结果,图2中的输出序列'A', 'B', 'C', '<eos>'的条件概率为 0.5 × 0.3 × 0.6 × 0.6 = 0.054 0.5\times0.3 \times0.6\times0.6=0.054 0.5×0.3×0.6×0.6=0.054,这大于图1中的贪心搜索的条件概率。这个例子说明:贪心搜索获得的输出序列'A', 'B', 'C', '<eos>'不一定是最佳序列。

二、穷举搜索

  如果目标是获得最优序列,我们可以考虑使用穷举搜索(exhaustive search):穷举地列举所有可能的输出序列及其条件概率,然后计算输出条件概率最高的一个。

  虽然我们可以使用穷举搜索来获得最优序列,但其计算量 O ( ∣ Y ∣ T ′ ) \mathcal{O}(\left|\mathcal{Y}\right|^{T'}) O(YT)可能高的惊人。例如,当 ∣ Y ∣ = 10000 |\mathcal{Y}|=10000 Y=10000 T ′ = 10 T'=10 T=10时,我们需要评估 1000 0 10 = 1 0 40 10000^{10} = 10^{40} 1000010=1040序列,这是一个极大的数,现有的计算机几乎不可能计算它。然而,贪心搜索的计算量 O ( ∣ Y ∣ T ′ ) \mathcal{O}(\left|\mathcal{Y}\right|T') O(YT)通它要显著地小于穷举搜索。例如,当 ∣ Y ∣ = 10000 |\mathcal{Y}|=10000 Y=10000 T ′ = 10 T'=10 T=10时,我们只需要评估 10000 × 10 = 1 0 5 10000\times10=10^5 10000×10=105个序列。

三、束搜索

  那么该选取哪种序列搜索策略呢?如果精度最重要,则显然是穷举搜索。如果计算成本最重要,则显然是贪心搜索。而束搜索的实际应用则介于这两个极端之间。

  束搜索(beam search)是贪心搜索的一个改进版本。它有一个超参数,名为束宽(beam size) k k k。在时间步 1 1 1,我们选择具有最高条件概率的 k k k个词元。这 k k k个词元将分别是 k k k个候选输出序列的第一个词元。在随后的每个时间步,基于上一时间步的 k k k个候选输出序列,我们将继续从 k ∣ Y ∣ k\left|\mathcal{Y}\right| kY个可能的选择中挑出具有最高条件概率的 k k k个候选输出序列。

在这里插入图片描述

图3 束搜索过程(束宽:2,输出序列的最大长度:3)。候选输出序列是A、C、A,B、C,E、A,B,D和C,E,D

  图3演示了束搜索的过程。假设输出的词表只包含五个元素: Y = { A , B , C , D , E } \mathcal{Y} = \{A, B, C, D, E\} Y={A,B,C,D,E},其中有一个是'<eos>'。设置束宽为 2 2 2,输出序列的最大长度为 3 3 3。在时间步 1 1 1,假设具有最高条件概率 P ( y 1 ∣ c ) P(y_1 \mid \mathbf{c}) P(y1c)的词元是 A A A C C C。在时间步 2 2 2,我们计算所有 y 2 ∈ Y y_2 \in \mathcal{Y} y2Y为:
P ( A , y 2 ∣ c ) = P ( A ∣ c ) P ( y 2 ∣ A , c ) P ( C , y 2 ∣ c ) = P ( C ∣ c ) P ( y 2 ∣ C , c ) (2) \begin{aligned}P(A, y_2 \mid \mathbf{c}) = P(A \mid \mathbf{c})P(y_2 \mid A, \mathbf{c})\\ P(C, y_2 \mid \mathbf{c}) = P(C \mid \mathbf{c})P(y_2 \mid C, \mathbf{c})\end{aligned}\tag{2} P(A,y2c)=P(Ac)P(y2A,c)P(C,y2c)=P(Cc)P(y2C,c)(2) 从这10个值中选择最大的两个,比如 P ( A , B ∣ c ) P(A, B \mid \mathbf{c}) P(A,Bc) P ( C , E ∣ c ) P(C, E \mid \mathbf{c}) P(C,Ec)。然后在时间步 3 3 3,我们计算所有 y 3 ∈ Y y_3 \in \mathcal{Y} y3Y为:
P ( A , B , y 3 ∣ c ) = P ( A , B ∣ c ) P ( y 3 ∣ A , B , c ) P ( C , E , y 3 ∣ c ) = P ( C , E ∣ c ) P ( y 3 ∣ C , E , c ) (3) \begin{aligned}P(A, B, y_3 \mid \mathbf{c}) = P(A, B \mid \mathbf{c})P(y_3 \mid A, B, \mathbf{c})\\P(C, E, y_3 \mid \mathbf{c}) = P(C, E \mid \mathbf{c})P(y_3 \mid C, E, \mathbf{c})\end{aligned}\tag{3} P(A,B,y3c)=P(A,Bc)P(y3A,B,c)P(C,E,y3c)=P(C,Ec)P(y3C,E,c)(3) 从这10个值中选择最大的两个,即 P ( A , B , D ∣ c ) P(A, B, D \mid \mathbf{c}) P(A,B,Dc) P ( C , E , D ∣ c ) P(C, E, D \mid \mathbf{c}) P(C,E,Dc),我们会得到六个候选输出序列:(1) A A A;(2) C C C;(3) A , B A,B A,B;(4) C , E C,E C,E;(5) A , B , D A,B,D A,B,D;(6) C , E , D C,E,D C,E,D

  最后,基于这六个序列(例如,丢弃包括'<eos>'和之后的部分),我们获得最终候选输出序列集合。然后我们选择其中条件概率乘积最高的序列作为输出序列:
1 L α log ⁡ P ( y 1 , … , y L ∣ c ) = 1 L α ∑ t ′ = 1 L log ⁡ P ( y t ′ ∣ y 1 , … , y t ′ − 1 , c ) (4) \frac{1}{L^\alpha} \log P(y_1, \ldots, y_{L}\mid \mathbf{c}) = \frac{1}{L^\alpha} \sum_{t'=1}^L \log P(y_{t'} \mid y_1, \ldots, y_{t'-1}, \mathbf{c})\tag{4} Lα1logP(y1,,yLc)=Lα1t=1LlogP(yty1,,yt1,c)(4)其中, L L L是最终候选序列的长度, α \alpha α通常设置为 0.75 0.75 0.75。因为一个较长的序列在式(4)的求和中会有更多的对数项,因此分母中的 L α L^\alpha Lα用于惩罚长序列。

  束搜索的计算量为 O ( k ∣ Y ∣ T ′ ) \mathcal{O}(k\left|\mathcal{Y}\right|T') O(kYT),这个结果介于贪心搜索和穷举搜索之间。实际上,贪心搜索可以看作一种束宽为 1 1 1的特殊类型的束搜索。通过灵活地选择束宽,束搜索可以在正确率和计算代价之间进行权衡。

小结

  • 序列搜索策略包括贪心搜索、穷举搜索和束搜索。
  • 贪心搜索所选取序列的计算量最小,但精度相对较低。
  • 穷举搜索所选取序列的精度最高,但计算量最大。
  • 束搜索通过灵活选择束宽,在正确率和计算代价之间进行权衡。
评论 33
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Francek Chen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值