多元线性回归模型预测房价

一、导入包及数据

1. 导入包

import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt

2. 导入数据

df = pd.read_csv('house_prices.csv')

二、数据分析

1.打印数据

使用 head方法 打印并观察前7条df数据

print(df.head(7))

请添加图片描述

2.统计特征信息

使用describe方法观察df各个特征的统计信息:

df.describe()

在这里插入图片描述

3. 异常值处理

  1. 代码
# 异常值处理
# ================ 异常值检验函数:iqr & z分数 两种方法 =========================
def outlier_test(data, column, method=None, z=2):
    """ 以某列为依据,使用 上下截断点法 检测异常值(索引) """
    """ 
    full_data: 完整数据
    column: full_data 中的指定行,格式 'x' 带引号
    return 可选; outlier: 异常值数据框 
    upper: 上截断点;  lower: 下截断点
    method:检验异常值的方法(可选, 默认的 None 为上下截断点法),
            选 Z 方法时,Z 默认为 2
    """
    # ================== 上下截断点法检验异常值 ==============================
    if method == None:
        print(f'以 {column} 列为依据,使用 上下截断点法(iqr) 检测异常值...')
        print('=' * 70)
        # 四分位点;这里调用函数会存在异常
        column_iqr = np.quantile(data[column], 0.75) - np.quantile(data[column], 0.25)
        # 1,3 分位数
        (q1, q3) = np.quantile(data[column], 0.25), np.quantile(data[column], 0.75)
        # 计算上下截断点
        upper, lower = (q3 + 1.5 * column_iqr), (q1 - 1.5 * column_iqr)
        # 检测异常值
        outlier = data[(data[column] <= lower) | (data[column] >= upper)]
        print(f'第一分位数: {q1}, 第三分位数:{q3}, 四分位极差:{column_iqr}')
        print(f"上截断点:{upper}, 下截断点:{lower}")
        return outlier, upper, lower
    # ===================== Z 分数检验异常值 ==========================
    if method == 'z':
        """ 以某列为依据,传入数据与希望分段的 z 分数点,返回异常值索引与所在数据框 """
        """ 
        params
        data: 完整数据
        column: 指定的检测列
        z: Z分位数, 默认为2,根据 z分数-正态曲线表,可知取左右两端的 2%,
           根据您 z 分数的正负设置。也可以任意更改,知道任意顶端百分比的数据集合
        """
        print(f'以 {column} 列为依据,使用 Z 分数法,z 分位数取 {z} 来检测异常值...')
        print('=' * 70)
        # 计算两个 Z 分数的数值点
        mean, std = np.mean(data[column]), np.std(data[column])
        upper, lower = (mean + z * std), (mean - z * std)
        print(f"取 {z} 个 Z分数:大于 {upper} 或小于 {lower} 的即可被视为异常值。")
        print('=' * 70)
        # 检测异常值
        outlier = data[(data[column] <= lower) | (data[column] >= upper)]
        return outlier, upper, lower
  1. 调用输出执行
outlier, upper, lower = outlier_test(data=df, column='price', method='z')
outlier.info(); outlier.sample(5)
  1. 结果显示
    在这里插入图片描述

  2. 删除异常数据

df.drop(index=outlier.index, inplace=True)

4.各类别数量分析

这里只是对neighborhood和,style,bathrooms类别进行分析

# 类别变量,又称为名义变量,nominal variables
nominal_vars = ['neighborhood', 'style','bathrooms']

for each in nominal_vars:
    print(each, ':')
    print(df[each].agg(['value_counts']).T)
    # 直接 .value_counts().T 无法实现下面的效果
     ## 必须得 agg,而且里面的中括号 [] 也不能少
    print('='*35)

请添加图片描述

6.热力图

  1. 代码
# 热力图 
def heatmap(data, method='pearson', camp='RdYlGn', figsize=(10 ,8)):
    """
    data: 整份数据
    method:默认为 pearson 系数
    camp:默认为:RdYlGn-红黄蓝;YlGnBu-黄绿蓝;Blues/Greens 也是不错的选择
    figsize: 默认为 10,8
    """
    ## 消除斜对角颜色重复的色块
    #     mask = np.zeros_like(df2.corr())
    #     mask[np.tril_indices_from(mask)] = True
    plt.figure(figsize=figsize, dpi= 80)
    sns.heatmap(data.corr(method=method), \
                xticklabels=data.corr(method=method).columns, \
                yticklabels=data.corr(method=method).columns, cmap=camp, \
                center=0, annot=True)
    # 要想实现只是留下对角线一半的效果,括号内的参数可以加上 mask=mask
  1. 执行
heatmap(data=df, figsize=(6,5))
  1. 结果
    在这里插入图片描述

7.方差分析

  1. 代码
# 刚才的探索我们发现,style 与 neighborhood 的类别都是三类,
 ## 如果只是两类的话我们可以进行卡方检验,所以这里我们使用方差分析
    
## 利用回归模型中的方差分析
## 只有 statsmodels 有方差分析库
## 从线性回归结果中提取方差分析结果
import statsmodels.api as sm
from statsmodels.formula.api import ols # ols 为建立线性回归模型的统计学库
from statsmodels.stats.anova import anova_lm

在这里插入图片描述

# 数据集样本数量:6028,这里随机选择 600 条,如果希望分层抽样,可参考文章:
df = df.copy().sample(600)

# C 表示告诉 Python 这是分类变量,否则 Python 会当成连续变量使用
## 这里直接使用方差分析对所有分类变量进行检验
## 下面几行代码便是使用统计学库进行方差分析的标准姿势
lm = ols('price ~ C(neighborhood) + C(style)', data=df).fit()
anova_lm(lm)

# Residual 行表示模型不能解释的组内的,其他的是能解释的组间的
# df: 自由度(n-1)- 分类变量中的类别个数减1
# sum_sq: 总平方和(SSM),residual行的 sum_eq: SSE
# mean_sq: msm, residual行的 mean_sq: mse
# F:F 统计量,查看卡方分布表即可
# PR(>F): P 值

# 反复刷新几次,发现都很显著,所以这两个变量也挺值得放入模型中
  1. 结果:
    在这里插入图片描述

三、多元线性回归建模

  1. 代码:
from statsmodels.formula.api import ols

lm = ols('price ~ area + bedrooms + bathrooms', data=df).fit()
lm.summary()

在这里插入图片描述

四、模型优化

发现精度还不够高,这里通过添加虚拟变量与使用方差膨胀因子检测多元共线性的方式来提升模型精度

  1. 设置虚拟变量
# 设置虚拟变量
# 以名义变量 neighborhood 街区为例
nominal_data = df['neighborhood']

# 设置虚拟变量
dummies = pd.get_dummies(nominal_data)
dummies.sample()  # pandas 会自动帮你命名

# 每个名义变量生成的虚拟变量中,需要各丢弃一个,这里以丢弃C为例
dummies.drop(columns=['C'], inplace=True)
dummies.sample()

在这里插入图片描述

  1. 将结果与原数据集拼接
# 将结果与原数据集拼接
results = pd.concat(objs=[df, dummies], axis='columns')  # 按照列来合并
results.sample(3)
# 对名义变量 style 的处理可自行尝试

在这里插入图片描述

  1. 再次建模
# 再次建模
lm = ols('price ~ area + bedrooms + bathrooms + A + B', data=results).fit()
lm.summary()

在这里插入图片描述
在这里插入图片描述

说明:模型末尾提示可能存在多元共线性,需要处理一下

  1. 自定义方差膨胀因子的检测公式
# 自定义方差膨胀因子的检测公式
def vif(df, col_i):
    """
    df: 整份数据
    col_i:被检测的列名
    """
    cols = list(df.columns)
    cols.remove(col_i)
    cols_noti = cols
    formula = col_i + '~' + '+'.join(cols_noti)
    r2 = ols(formula, df).fit().rsquared
    return 1. / (1. - r2)
test_data = results[['area', 'bedrooms', 'bathrooms', 'A', 'B']]
for i in test_data.columns:
    print(i, '\t', vif(df=test_data, col_i=i))
# 发现 bedrooms 和 bathrooms 存在强相关性,可能这两个变量是解释同一个问题

在这里插入图片描述

说明:bedrooms 和 bathrooms 这两个变量的方差膨胀因子较高,也印证了方差膨胀因子大多成对出现的原则,这里我们丢弃膨胀因子较大的 bedrooms 即可。

lm = ols(formula='price ~ area + bathrooms + A + B', data=results).fit()
lm.summary()

在这里插入图片描述

在这里插入图片描述

  1. 再次进行多元共线性检测
# 再次进行多元共线性检测
test_data = df[['area', 'bathrooms']]
for i in test_data.columns:
    print(i, '\t', vif(df=test_data, col_i=i))

在这里插入图片描述

  • 1
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值