洛必达法则求极限

洛必达法则

未定式:如果当 x → a ( 或  x → ∞ ) x \rightarrow a(\text{或 } x \rightarrow \infty) xa( x) 时两个函数 f ( x ) f(x) f(x) F ( x ) F(x) F(x) 都趋于零或都趋于无穷大,那么极限 lim ⁡ x → a ( x → ∞ ) f ( x ) F ( x ) \displaystyle \lim_{x \rightarrow a \\(x \rightarrow \infty)}{\cfrac{f(x)}{F(x)}} xa(x)limF(x)f(x) 可能存在、也可能不存在,通常把这种极限叫做 未定式 ,分别简记为 0 0 \cfrac{0}{0} 00 ∞ ∞ \cfrac{\infty}{\infty}

洛必达法则(L’Hôpital’s rule) 主要是以下两个定理:

定理1:

  1. x → a x \rightarrow a xa 时,函数 f ( x ) f(x) f(x) F ( x ) F(x) F(x) 都趋于零;
  2. 在点 a a a 的某去心邻域内, f ′ ( x ) f'(x) f(x) F ′ ( x ) F'(x) F(x) 都存在且 F ′ ( x ) ≠ 0 F'(x) \neq 0 F(x)=0
  3. lim ⁡ x → a f ′ ( x ) F ′ ( x ) \displaystyle \lim_{x \rightarrow a}{\cfrac{f'(x)}{F'(x)}} xalimF(x)f(x) 存在(或为无穷大),则有

lim ⁡ x → a f ( x ) F ( x ) = lim ⁡ x → a f ′ ( x ) F ′ ( x ) . \lim_{x \rightarrow a}{\cfrac{f(x)}{F(x)}} = \lim_{x \rightarrow a}{\cfrac{f'(x)}{F'(x)}}. xalimF(x)f(x)=xalimF(x)f(x).

证明如下图:
洛必达法则证明1

定理2:

  1. x → ∞ x \rightarrow \infty x 时,函数 f ( x ) f(x) f(x) F ( x ) F(x) F(x) 都趋于零或无穷;
  2. ∣ x ∣ > N \lvert x \rvert > N x>N 时, f ′ ( x ) f'(x) f(x) F ′ ( x ) F'(x) F(x) 都存在且 F ′ ( x ) ≠ 0 F'(x) \neq 0 F(x)=0
  3. lim ⁡ x → ∞ f ′ ( x ) F ′ ( x ) \displaystyle \lim_{x \rightarrow \infty}{\cfrac{f'(x)}{F'(x)}} xlimF(x)f(x) 存在(或为无穷大),则有

lim ⁡ x → ∞ f ( x ) F ( x ) = lim ⁡ x → ∞ f ′ ( x ) F ′ ( x ) . \lim_{x \rightarrow \infty}{\cfrac{f(x)}{F(x)}} = \lim_{x \rightarrow \infty}{\cfrac{f'(x)}{F'(x)}}. xlimF(x)f(x)=xlimF(x)f(x).

维基百科上对洛必达法则的描述为:

令实数 c ∈ R ˉ \displaystyle c\in {\bar {\mathbb {R} }} cRˉ ,函数 f ( x ) , g ( x ) f(x),g(x) f(x),g(x) 在以 x = c x = c x=c 为端点的开区间可微 lim ⁡ x → c f ′ ( x ) g ′ ( x ) ∈ R ˉ \displaystyle \lim_{x \rightarrow c}{\cfrac{f'(x)}{g'(x)}} \in \bar{\mathbb {R}} xclimg(x)f(x)Rˉ ,且 g ′ ( x ) ≠ 0 g'(x) \neq 0 g(x)=0 ,如果 lim ⁡ x → c f ( x ) = lim ⁡ x → c g ( x ) = 0 \displaystyle \lim_{x \rightarrow c}{f(x)} = \lim_{x \rightarrow c}{g(x)} = 0 xclimf(x)=xclimg(x)=0 lim ⁡ x → c ∣ f ( x ) ∣ = lim ⁡ x → c ∣ g ( x ) ∣ = ∞ \displaystyle \lim_{x \rightarrow c}{\lvert f(x) \rvert} = \lim_{x \rightarrow c}{\lvert g(x) \rvert} = \infty xclimf(x)∣=xclimg(x)∣= 其中一者成立,则有:
lim ⁡ x → c f ( x ) g ( x ) = lim ⁡ x → c f ′ ( x ) g ′ ( x ) \lim_{x \rightarrow c}{\cfrac{f(x)}{g(x)}} = \lim_{x \rightarrow c}{\cfrac{f'(x)}{g'(x)}} xclimg(x)f(x)=xclimg(x)f(x)

洛必达法则应用

类型A: ± ∞ ± ∞ \displaystyle \cfrac{\pm \infty}{\pm \infty} ±±

例题:

(1)求 lim ⁡ x → + ∞ ln ⁡ x x n   ( n > 0 ) . \displaystyle \lim_{x \rightarrow +\infty}{\cfrac{\ln x}{x^n}} \, (n > 0). x+limxnlnx(n>0).

解: lim ⁡ x → + ∞ ln ⁡ x x n = lim ⁡ x → + ∞ 1 x n x n − 1 = lim ⁡ x → + ∞ 1 n x n = 0 \displaystyle \lim_{x \rightarrow +\infty}{\cfrac{\ln x}{x^n}} = \lim_{x \rightarrow +\infty}{\cfrac{\cfrac{1}{x}}{nx^{n - 1}}} = \lim_{x \rightarrow +\infty}{\cfrac{1}{nx^n}} = 0 x+limxnlnx=x+limnxn1x1=x+limnxn1=0

(2)求 lim ⁡ x → + ∞ x n e λ x   ( n 为正整数, λ > 0 ) . \displaystyle \lim_{x \rightarrow +\infty}{\cfrac{x^n}{\mathrm{e}^{\lambda x}}} \, (n \text{为正整数,}\lambda > 0). x+limeλxxn(n为正整数,λ>0).

解:相继应用洛必达法则 n 次,得
lim ⁡ x → + ∞ x n e λ x = lim ⁡ x → + ∞ n x n − 1 λ e λ x = lim ⁡ x → + ∞ n ( n − 1 ) x n − 2 λ 2 e λ x = ⋯ = lim ⁡ x → + ∞ n ! λ n e λ x = 0. \lim_{x \rightarrow +\infty}{\cfrac{x^n}{\mathrm{e}^{\lambda x}}} = \lim_{x \rightarrow +\infty}{\cfrac{nx^{n - 1}}{\lambda \mathrm{e}^{\lambda x}}} = \lim_{x \rightarrow +\infty}{\cfrac{n(n - 1)x^{n - 2}}{\lambda^2 \mathrm{e}^{\lambda x}}} = \cdots = \lim_{x \rightarrow +\infty}{\cfrac{n!}{\lambda^n \mathrm{e}^{\lambda x}}} = 0. x+limeλxxn=x+limλeλxnxn1=x+limλ2eλxn(n1)xn2==x+limλneλxn!=0.

类型B1: ∞ − ∞ \displaystyle \infty - \infty

例题:求 lim ⁡ x → π 2 ( sec ⁡ x − tan ⁡ x ) . \displaystyle \lim_{x \rightarrow \frac{\pi}{2}}{(\sec x - \tan x)}. x2πlim(secxtanx).

解: lim ⁡ x → π 2 ( sec ⁡ x − tan ⁡ x ) = lim ⁡ x → π 2 1 − sin ⁡ x cos ⁡ x = lim ⁡ x → π 2 − cos ⁡ x − sin ⁡ x = 0 \displaystyle \lim_{x \rightarrow \frac{\pi}{2}}{(\sec x - \tan x)} = \lim_{x \rightarrow \frac{\pi}{2}}{\cfrac{1 - \sin x}{\cos x}} = \lim_{x \rightarrow \frac{\pi}{2}}{\cfrac{- \cos x}{-\sin x}} = 0 x2πlim(secxtanx)=x2πlimcosx1sinx=x2πlimsinxcosx=0

类型B2: 0 ⋅ ± ∞ 0 \cdot \pm \infty 0±

例题:求 lim ⁡ x → 0 + x n ln ⁡ x   ( n > 0 ) . \displaystyle \lim_{x \rightarrow 0^+}{x^n \ln x} \, (n>0). x0+limxnlnx(n>0).

解:
lim ⁡ x → 0 + x n ln ⁡ x = lim ⁡ x → 0 + ln ⁡ x x − n = lim ⁡ x → 0 + 1 x − n x − n − 1 = lim ⁡ x → 0 + − x n n = 0 \lim_{x \rightarrow 0^+}{x^n \ln x} = \lim_{x \rightarrow 0^+}{\cfrac{\ln x}{x^{-n}}} = \lim_{x \rightarrow 0^+}{\cfrac{\cfrac{1}{x}}{-nx^{-n-1}}} = \lim_{x \rightarrow 0^+}{\cfrac{-x^n}{n}} = 0 x0+limxnlnx=x0+limxnlnx=x0+limnxn1x1=x0+limnxn=0

类型C: 1 ± ∞ , 0 0 , ∞ 0 1^{\pm \infty}, 0^0, \infty ^0 1±,00,0

例题:求 lim ⁡ x → 0 + x x . \displaystyle \lim_{x \rightarrow 0^+}{x^x}. x0+limxx.

解:设 y = x x \displaystyle y = x^x y=xx ,取对数得
ln ⁡ y = x ln ⁡ x \ln y = x \ln x lny=xlnx
x → 0 + \displaystyle x \rightarrow 0^+ x0+ 时,上式右端是 0 ⋅ ∞ 0 \cdot \infty 0 型未定式
lim ⁡ x → 0 + ln ⁡ y = lim ⁡ x → 0 + ( x ln ⁡ x ) = 0 \lim_{x \rightarrow 0^+}{\ln y} = \lim_{x \rightarrow 0^+}{(x \ln x)} = 0 x0+limlny=x0+lim(xlnx)=0
因为 y = e ln ⁡ y \displaystyle y = \mathrm{e}^{\ln y} y=elny ,而 lim ⁡ y = lim ⁡ e ln ⁡ y = e lim ⁡ ln ⁡ y \displaystyle \lim y = \lim{\mathrm{e}^{\ln y}} = \mathrm{e}^{\lim \ln y} limy=limelny=elimlny (当 x → 0 + x \rightarrow 0^+ x0+),所以
lim ⁡ x → 0 + x x = lim ⁡ x → 0 + y = e 0 = 1. \lim_{x \rightarrow 0^+}{x^x} = \lim_{x \rightarrow 0^+}{y} = \mathrm{e}^0 = 1. x0+limxx=x0+limy=e0=1.

洛必达法则类型的总结

  • 类型A 如果极限是分子式的形式,例如 lim ⁡ x → a f ( x ) g ( x ) \displaystyle \lim_{x \rightarrow a}{\cfrac{f(x)}{g(x)}} xalimg(x)f(x) ,应先检查是否为不定式。若为 0 0 \displaystyle \cfrac{0}{0} 00 ± ∞ ± ∞ \displaystyle \cfrac{\pm \infty}{\pm \infty} ±± 型,则可以使用洛必达法则。

  • 类型B1 如果是求差的极限,如 lim ⁡ x → a ( f ( x ) − g ( x ) ) \displaystyle \lim_{x \rightarrow a}{(f(x) - g(x))} xalim(f(x)g(x)) ,可以通过通分同时除以一个共轭表达式从而转化为类型A。

  • 类型B2 如果极限是乘积的形式,如 lim ⁡ x → a f ( x ) g ( x ) \displaystyle \lim_{x \rightarrow a}{f(x)g(x)} xalimf(x)g(x) ,应选择两个表达式中较简单的一个取倒数把它移到分母(尽量不要选用对数作分母),就可以转化为 lim ⁡ x → a g ( x ) 1 / f ( x ) \displaystyle \lim_{x \rightarrow a}{\cfrac{g(x)}{1/f(x)}} xalim1/f(x)g(x)

  • 类型C 如果极限为指数形式,且该指数的底和指数部分都含变量,如 lim ⁡ x → a f ( x ) g ( x ) \displaystyle \lim_{x \rightarrow a}{f(x)^{g(x)}} xalimf(x)g(x) ,应先对其取对数:
    lim ⁡ x → a ln ⁡ f ( x ) g ( x ) = lim ⁡ x → a g ( x ) ln ⁡ f ( x ) \lim_{x \rightarrow a}{\ln{f(x)^{g(x)}}} = \lim_{x \rightarrow a}{g(x) \ln{f(x)}} xalimlnf(x)g(x)=xalimg(x)lnf(x)
    这样就转化为类型 B2 或 A ,这时有:
    lim ⁡ x → a ln ⁡ f ( x ) g ( x ) = L \lim_{x \rightarrow a}{\ln{f(x)^{g(x)}}} = L xalimlnf(x)g(x)=L
    r然后两边取指数,可得:
    lim ⁡ x → a f ( x ) g ( x ) = e L \lim_{x \rightarrow a}{f(x)^{g(x)}} = \mathrm{e}^L xalimf(x)g(x)=eL


原文链接:洛必达法则求极限

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值