本文主要针对NLP算法工程师,构建NLPer面试所需知识的思维导图;只涉及对付面试的知识。主要包括以下三大部分的知识:统计机器学习,深度学习(NLP方向),算法与数据结构。
本文的主要目的:只构建整体知识的框架(面),不涉及算法细节。各算法的细节会在相应算法学习文档详细介绍。本章构建的知识框架便于对整体知识进行回顾。
1 统计机器学习
1.1 基础算法
主要包括六大机器学习算法:感知机,KNN,朴树贝叶斯,决策树,LR,SVM。
1.2 概率图模型
概率图部分知识主要包括:三大线性概率图模型的思想与区别。
主要从概率图模型演进过程:HMM->MEMM->CRF,来贯穿学习这三个线性概率图模型。
1.3 集成学习
集成学习的内容包括:两种不同类别(boosting和bagging),基模型结合策略,多样性度量方法,多样性增强方法。
集成学习综述:两大类别(boosting,bagging),结合策略/多样性度量/多样性增强