NLP中的Attention总结

本文深入解析了Attention机制在自然语言处理中的应用,介绍了Attention的基本原理、计算方式及在长文本任务、两端相关文本处理和依赖特定特征任务中的应用场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Attention是模拟人脑的注意力机制。人在看到一些东西,往往只关注重要的信息,而忽略其他信息。自然语言处理中的attention是对文本分配注意力权重,Attention的本质就是从关注全部变为关注重点。

1 Attention的原理

在这里插入图片描述
Attention的计算过程:

  • query和key向量进行相似度计算,得到权重。
  • 将得到的权值进行归一化,得到每个key的归一化权重。
  • 根据权重,对value进行加权求和。
2 Attention的类型

在这里插入图片描述

如上图,按不同的方式,可将attention分为不同类型。

在这里插入图片描述

3 attention计算方式

attention通俗来讲是用两个向量(query,key)计算得到一个得分score。从数学角度看,就是两个向量得到一个数值。一般有以下计算方式:

(1)点乘: s ( q , k ) = q ⋅ k s(q,k)=q\cdot k s(q,k)=qk

(2)余弦相似度: s ( q , k ) = q ⋅ k ∣ q ∣ ∣ k ∣ s(q,k)=\frac{q\cdot k}{|q||k|} s(q,k)=qkqk

还有引入学习参数的方式

(3)矩阵相乘: s ( q , k ) = q T W k s(q,k)=q^TWk s(q,k)=qTWk

(4)小网络学习(多层感知机):输入两个向量,输出一个数值

4 attention的使用场景
4.1 长文本任务

如篇章级别的任务,这类型任务输入的信息过多,使用attention捕获关键信息。

4.2 涉及两端相关文本

可能需要对两端内容进行对齐,如机器翻译,翻译时当前词与原文的信息对齐。阅读理解,问题与原文信息的对齐。

4.3 任务只依赖某些特征

某些任务只依赖与部分强特征词。

引用自:

[1]Attention用于NLP的一些小结

[2]一文看懂attention

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值