题意:有多个点,在平面上位于坐标点上,给出一些关系,表示某个点在某个点的正东/西/南/北方向多少距离,然后给出一系列询问,表示在第几个关系给出后询问某两点的曼哈顿距离,或者未知则输出-1。
只要在元素的权值上保存两个信息,与祖先元素的两个方向的差,我选择正东和正北方向差(负值表示正西和正南),然后直接用带权并查集,询问时曼哈顿距离就是两个权值的绝对值之和。由于询问是嵌在给出关系中间的,所以要先存下所有关系和询问,离线做就行。
#include<iostream>
#include<cstdio>
#include<string>
#include<algorithm>
#include<cstdlib>
using namespace std;
const int MAXN=50005;
struct Node{
int a,b,dis,offx,offy;
}e[MAXN];
struct que{
int a,b,pos,id;
bool operator < (const que& x)const{
return pos<x.pos;
}
}q[MAXN];
int n,m,fa[MAXN],x[MAXN],y[MAXN],ans[MAXN];
void Makeset()
{
int i;
for(i=1;i<=n;i++){
fa[i]=i;
x[i]=0;
y[i]=0;
}
}
inline int Find(int a)
{
if(fa[a]==a) return fa[a];
int k=Find(fa[a]);
x[a]+=x[fa[a]];
y[a]+=y[fa[a]];
return fa[a]=k;
}
int main()
{
int i,j,k,num=1;
string flag;
scanf("%d%d",&n,&m);
Makeset();
for(i=1;i<=m;i++){
scanf("%d%d%d",&e[i].a,&e[i].b,&e[i].dis);
cin>>flag;
e[i].offx=0;e[i].offy=0;
if(flag[0]=='N') e[i].offx=e[i].dis;
else if(flag[0]=='S') e[i].offx=-e[i].dis;
else if(flag[0]=='E') e[i].offy=e[i].dis;
else e[i].offy=-e[i].dis;
}
scanf("%d",&k);
for(i=1;i<=k;i++){
scanf("%d%d%d",&q[i].a,&q[i].b,&q[i].pos);
q[i].id=i;
}
sort(q+1,q+1+k);
for(i=1;i<=m;i++){
int aa=Find(e[i].a),bb=Find(e[i].b);
if(aa!=bb){
fa[aa]=bb;
x[aa]=-x[e[i].a]+e[i].offx+x[e[i].b];
y[aa]=-y[e[i].a]+e[i].offy+y[e[i].b];
}
while(num<=k&&q[num].pos==i){
aa=Find(q[num].a);bb=Find(q[num].b);
if(aa!=bb) ans[q[num].id]=-1;
else ans[q[num].id]=abs(x[q[num].a]-x[q[num].b])+abs(y[q[num].a]-y[q[num].b]);
num++;
}
}
for(i=1;i<=k;i++){
printf("%d\n",ans[i]);
}
return 0;
}