优化Map任务
如何优化呢?首先我们要知道map任务这一阶段的流程和瓶颈,才可以进行“因材施教”进行优化,map任务流程图如下:
由图可知,详细流程如下:在Read阶段,map任务从Hadoop分布式文件系统(HDFS)读取固定大小(如64MB)的数据块。而写入的文件根据实际的情况也不同,可以是任意大小的数据块(如80MB)。这种情况下,为了存储数据,就有两种数据块:一种是64MB,另一种是16MB。在这个阶段进行性能分析时,我们不仅要测量Read阶段的持续时间,还要记录map任务读取的数据量。
要分析map阶段,就要测量整个map函数的执行时间和处理的记录总数,并规范化为每条记录的处理时间。测量执行时间时需要检查超常规数据,这通常是大量小文件或者单个不可拆分的大文件造成的。可以通过比较所以的map任务(同一作业)的输入数据大小,来发现是否存在超常规数据。
在spill阶段,框架对中间数据进行本地排序,并针对不同reduce任务进行划分,如果有可用的combiner则进行合并,然后把中间数据写入磁盘,要对这个阶段进行性能分析,我们要测了执行上述全部任务的时间。如果使用了combiner,处理时间应该包含执行时间。
在Fetch阶段,我们要测量框架把Map阶段的输出缓冲到内存花费的时间以及产生的中间数据的量。最后一个Merge阶段,针对每一个reduce任务,我们要测量框架把不通的溢写文件合并成单个溢写文件花费的时间。
输入数据和块大小的影响
在进入Read阶段之前,需要先在文件系统中定位数据。数据模式也会影响MapReduce作业性能。要使map任务高效运行&#x