级数

一、复数项级数

学习目标

  • 会判断复数列的极限
  • 会判别复级数的绝对收敛与收敛性

1、复数列的极限

     定理:复数列 { α n \alpha_n αn} ( n = 1 , 2 , ⋅ ⋅ ⋅ ) (n=1,2,···) (n=1,2,) 收敛于 α \alpha α 的充要条件是 lim ⁡ n → ∞ a n = a , lim ⁡ n → ∞ b n = b \lim_{n \to \infty}a_n=a,\lim_{n \to \infty }b_n=b nliman=a,nlimbn=b

2、级数概念

    定理:级数 ∑ n = 1 ∞ α n \sum\limits_{n=1}^{\infty}{\alpha_n} n=1αn 收敛的充要条件是级数 ∑ n = 1 ∞ a n \sum\limits_{n=1}^{\infty}{a_n} n=1an ∑ n = 1 n b n \sum\limits_{n=1}^{n}{b_n} n=1nbn 都收敛。
    如果 ∑ n = 1 ∞ ∣ a n ∣ \sum\limits_{n=1}^{\infty}{|a_n|} n=1an 收敛,那么 ∑ n = 1 ∞ a n \sum\limits_{n=1}^{\infty}{a_n} n=1an 也收敛
    如果 ∑ n = 1 ∞ ∣ a n ∣ \sum\limits_{n=1}^{\infty}{|a_n|} n=1an 收敛,那么称 ∑ n = 1 ∞ a n \sum\limits_{n=1}^{\infty}{a_n} n=1an绝对收敛;非绝对收敛的收敛级数称为条件收敛级数

3、判断级数收敛

    比值判别法;根值判别法;比较判别法;莱布尼兹判别法。

二、幂级数

学习目标

  • 记住阿贝尔定理并会运用
  • 会求幂级数的收敛半径
  • 收敛幂级数的加减法、导数、积分

1、幂级数的概念

    阿贝尔定理:如果级数 ∑ n = 0 ∞ c n z n \sum\limits_{n=0}^{\infty}{c_nz^n} n=0cnzn z = z 0 ( ≠ 0 ) z=z_0(\neq0) z=z0(̸=0) 收敛,那么对满足 ∣ z ∣ &lt; ∣ z 0 ∣ |z|&lt;|z_0| z<z0 z z z ,级数必绝对收敛. 如果在 z = z 0 z=z_0 z=z0 级数发散,那么对满足 ∣ z ∣ &gt; ∣ z 0 ∣ |z|&gt;|z_0| z>z0 z z z ,级数必发散。

2、收敛半径的求法

    比值法:如果 lim ⁡ n → ∞ ∣ C n + 1 C n ∣ = λ ≠ 0 \lim_{n \to \infty}|\frac{C_{n+1}}{C_n}|=\lambda\neq 0 limnCnCn+1=λ̸=0 那么收敛半径 R = 1 λ R=\frac{1}{\lambda} R=λ1
    根植法:如果 lim ⁡ n → ∞ ∣ C n ∣ n = μ ≠ 0 \lim_{n \to \infty}\sqrt[n]{|C_n|}=\mu\neq0 limnnCn =μ̸=0,那么收敛半径 R = 1 μ R=\frac{1}{\mu} R=μ1

3、幂级数的运算与性质

    逐项积分,逐项求导;

三、泰勒级数

学习目标

  • 记住泰勒级数展开定理
  • 记住几个重要的函数在原点处的泰勒展开式
  • 会用间接法求函数在某一点的泰勒展开式
  • 知道解析函数与幂级数展开的关系

        定理:设 f ( z ) f(z) f(z) 在区域 D D D 内解析, z 0 z_0 z0 D D D 内的一点, d d d z 0 z_0 z0 到边界上各点的最短路径,那么当 ∣ z − z 0 ∣ &lt; d |z-z_0|&lt;d zz0<d 时, f ( z ) = ∑ n = 0 ∞ f ( n ) ( z 0 ) n ! ( z − z 0 ) n f(z)=\sum\limits_{n=0}^{\infty}\frac{f^{(n)}(z_0)}{n!}(z-z_0)^n f(z)=n=0n!f(n)(z0)(zz0)n成立,其中 n = 0 , 1 , 2 , ⋅ ⋅ ⋅ n=0,1,2,··· n=0,1,2,

四、洛朗级数

学习目标

  • 记住洛朗级数展开定理
  • 知道泰勒级数与洛朗级数的关系
  • 会用间接法函数在某一个圆环域的洛朗展开式

1、洛朗展开式

    设 f ( z ) f(z) f(z) 在圆环域 R 1 &lt; ∣ z − z 0 ∣ &lt; R 2 R_1&lt;|z-z_0|&lt;R_2 R1<zz0<R2 内处处解析,那么 f ( z ) = ∑ n = − ∞ ∞ c n ( z − z 0 ) n f(z)=\sum\limits^{\infty}_{n=-\infty}c_n(z-z_0)^n f(z)=n=cn(zz0)n其中 c n = 1 2 π i ∮ c f ( ξ ) ( ξ − z 0 ) n + 1 d ξ . ( n = 0 , ± 1 , ± 2 , ⋅ ⋅ ⋅ ) c_n=\frac{1}{2\pi i}\oint_c\frac{f(\xi)}{(\xi-z_0)^{n+1}}d\xi. (n=0,\pm1,\pm2,···) cn=2πi1c(ξz0)n+1f(ξ)dξ.(n=0,±1,±2,)
经典例题:函数 f ( z ) = 1 ( z − 1 ) ( z − 2 ) f(z)=\frac{1}{(z-1)(z-2)} f(z)=(z1)(z2)1 在圆环域
    1) 0 &lt; ∣ z ∣ &lt; 1 0&lt;|z|&lt;1 0<z<1
    2) 1 &lt; ∣ z ∣ &lt; 2 1&lt;|z|&lt;2 1<z<2
    3) 2 &lt; ∣ z ∣ &lt; + ∞ 2&lt;|z|&lt;+\infty 2<z<+
解:
先把 f ( z ) f(z) f(z) 用部分分式来表示 f ( z ) = 1 1 − z − 1 2 − z f(z)=\frac{1}{1-z}-\frac{1}{2-z} f(z)=1z12z1
1)在 0 &lt; ∣ z ∣ &lt; 1 0&lt;|z|&lt;1 0<z<1 内,由于 ∣ z ∣ &lt; 1 |z|&lt;1 z<1,从而 ∣ z 2 ∣ &lt; 1 |\frac{z}{2}|&lt;1 2z<1.所以 1 1 − z = 1 + z + z 2 + ⋅ ⋅ ⋅ + z n + ⋅ ⋅ ⋅         ( 4.1 ) \frac{1}{1-z}=1+z+z^2+···+z^n+···\ \ \ \ \ \ \ (4.1) 1z1=1+z+z2++zn+       (4.1) 1 2 − z = 1 2 1 1 − z 2 = 1 2 ( 1 + z 2 + z 2 2 2 + ⋅ ⋅ ⋅ + z n 2 n + ⋅ ⋅ ⋅ )       ( 4.2 ) \frac{1}{2-z}=\frac{1}{2}\frac{1}{1-\frac{z}{2}}=\frac{1}{2}(1+\frac{z}{2}+\frac{z^2}{2^2}+···+\frac{z^n}{2^n}+···)\ \ \ \ \ (4.2) 2z1=2112z1=21(1+2z+22z2++2nzn+)     (4.2)
因此我们有 f ( z ) = ( 1 + z + z 2 + ⋅ ⋅ ⋅ ) − 1 2 ( 1 + z 2 + z 2 4 + ⋅ ⋅ ⋅ ) = 1 2 + 3 4 z + 7 8 z 2 + ⋅ ⋅ ⋅ f(z)=(1+z+z^2+···)-\frac{1}{2}(1+\frac{z}{2}+\frac{z^2}{4}+···)=\frac{1}{2}+\frac{3}{4}z+\frac{7}{8}z^2+··· f(z)=(1+z+z2+)21(1+2z+4z2+)=21+43z+87z2+
2)在 1 &lt; ∣ z ∣ &lt; 2 1&lt;|z|&lt;2 1<z<2 内,由于 ∣ z ∣ &gt; 1 |z|&gt;1 z>1,所以 ( 4.1 ) (4.1) (4.1) 不成立,但此时 ∣ 1 z &lt; 1 ∣ |\frac{1}{z}&lt;1| z1<1 ,因此把 1 1 − z \frac{1}{1-z} 1z1 另行展开如下: 1 1 − z = − 1 z ⋅ 1 1 − 1 z = − 1 z ( 1 + 1 z 2 + ⋅ ⋅ ⋅ )      ( 4.3 ) \frac{1}{1-z}=-\frac{1}{z}·\frac{1}{1-\frac{1}{z}}=-\frac{1}{z}(1+\frac{1}{z^2}+···)\ \ \ \ (4.3) 1z1=z11z11=z1(1+z21+)    (4.3)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值