高等数学A(下)小整理——级数


其实是在熟悉 KaTeX \KaTeX KATEX怎么用

1. 数项级数

1.1 级数的概念

  1. x 1 ,   x 2 ,   . . . ,   x n   . . . x_1,\space x_2, \space..., \space x_n \space ... x1, x2, ..., xn ... 是一个数列,称:
    x 1 + x 2 + . . . + x n   . . . x_1 + x_2+...+ x_n \space ... x1+x2+...+xn ...
    为无穷级数(简称级数),记为 ∑ n = 1 ∞ x n \displaystyle\sum_{n=1}^{\infty}x_n n=1xn , 其中 x n x_n xn 称为级数的通项一般项

  2. 如果级数 ∑ n = 1 ∞ x n \displaystyle\sum_{n=1}^{\infty}x_n n=1xn 的部分和数列 { S n S_n Sn } 收敛于有限数 S S S, 则称级数 ∑ n = 1 ∞ x n \displaystyle\sum_{n=1}^{\infty}x_n n=1xn 收敛,其和为 S S S
    如果部分和{ S n S_n Sn }发散,则称级数 ∑ n = 1 ∞ x n \displaystyle\sum_{n=1}^{\infty}x_n n=1xn 发散。

1.2 级数的基本性质

  1. 级数收敛的必要条件:
    若级数 ∑ n = 1 ∞ x n \displaystyle\sum_{n=1}^{\infty}x_n n=1xn 收敛 ,则 lim ⁡ n → ∞ x n = 0 \lim\limits_{n\to\infty}x_n = 0 nlimxn=0

  2. 在级数中去掉,加上,改变有限项都不改变级数的收敛性或是发散性

  3. 设级数 ∑ n = 1 ∞ a n \displaystyle\sum_{n=1}^{\infty}a_n n=1an ∑ n = 1 ∞ b n \displaystyle\sum_{n=1}^{\infty}b_n n=1bn 收敛, α , β \alpha,\beta α,β 是常数,则级数 ∑ n = 1 ∞ ( α a n + β b n ) = α ∑ n = 1 ∞ a n + β ∑ n = 1 ∞ b n \displaystyle\sum_{n=1}^{\infty}{(\enspace\alpha a_n+\enspace\beta b_n\enspace)}=\alpha\displaystyle\sum_{n=1}^{\infty}a_n+\beta\displaystyle\sum_{n=1}^{\infty}b_n n=1(αan+βbn)=αn=1an+βn=1bn
    α ∑ n = 1 ∞ a n + β ∑ n = 1 ∞ b n \alpha\displaystyle\sum_{n=1}^{\infty}a_n+\beta\displaystyle\sum_{n=1}^{\infty}b_n αn=1an+βn=1bn 收敛。

  4. 假设级数 ∑ n = 1 ∞ x n \displaystyle\sum_{n=1}^{\infty}x_n n=1xn 收敛,则在他的求和表达式中任意添加括号后所得的级数仍然收敛。

    • 收敛级数去括号后不一定收敛

1.3 级数的柯西收敛准则

  1. 级数的柯西收敛准则:

    级数 ∑ n = 1 ∞ x n \displaystyle\sum_{n=1}^{\infty}x_n n=1xn 收敛的充分必要条件是对于任意的 ε > 0 \varepsilon>0 ε>0,存在正整数 N N N, 使得对一切 n > m > N n>m>N n>m>N, 成立
    ∣ x m + 1 + x m + 2 + x m + 3 + . . . + x n ∣ = ∣ ∑ k = m + 1 n x n ∣ < ε \lvert\enspace x_{m+1}+x_{m+2}+x_{m+3}+...+x_n\enspace \rvert =\lvert \enspace \displaystyle\sum_{k=m+1}^{n}x_n \enspace\rvert < \varepsilon xm+1+xm+2+xm+3+...+xn=k=m+1nxn<ε

  2. 推论:

    对于一个数项级数 ∑ n = 1 ∞ x n \displaystyle\sum_{n=1}^{\infty}x_n n=1xn 逐项取绝对值后得到新级数 ∑ n = 1 ∞ ∣ x n ∣ \displaystyle\sum_{n=1}^{\infty}\lvert\enspace{x_n}\enspace\rvert n=1xn , 则当 ∑ n = 1 ∞ ∣ x n ∣ \displaystyle\sum_{n=1}^{\infty}\lvert\enspace{x_n}\enspace\rvert n=1xn 收敛时, ∑ n = 1 ∞ x n \displaystyle\sum_{n=1}^{\infty}x_n n=1xn 也收敛。

  3. ∑ n = 1 ∞ ∣ x n ∣ \displaystyle\sum_{n=1}^{\infty}\lvert\enspace{x_n}\enspace\rvert n=1xn 收敛叫绝对收敛
    ∑ n = 1 ∞ x n \displaystyle\sum_{n=1}^{\infty}x_n n=1xn 收敛叫条件收敛。

2.正项级数

2.1 正项级数的比较判别法

  1. 每一项都是非负的叫正项级数

  2. 比较判别法:

    ∑ n = 1 ∞ x n \displaystyle\sum_{n=1}^{\infty}x_n n=1xn ∑ n = 1 ∞ y n \displaystyle\sum_{n=1}^{\infty}y_n n=1yn 是正项级数。若存在常数 A > 0 A>0 A>0 , 使得 x n ≤ A y n x_{n}\leq Ay_{n} xnAyn
    则:(1) ∑ n = 1 ∞ y n \displaystyle\sum_{n=1}^{\infty}y_n n=1yn 收敛时, ∑ n = 1 ∞ x n \displaystyle\sum_{n=1}^{\infty}x_n n=1xn 也收敛
    (2) ∑ n = 1 ∞ x n \displaystyle\sum_{n=1}^{\infty}x_n n=1xn发散时, ∑ n = 1 ∞ y n \displaystyle\sum_{n=1}^{\infty}y_n n=1yn 也发散。

  3. 比较判别法的极限形式:

∑ n = 1 ∞

  • 26
    点赞
  • 145
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值