洛谷P4779 【模板】单源最短路径(标准版)(dijkstra+优先队列-堆优化:时间复杂度o((m+n)logn))

该博客介绍了如何使用Dijkstra算法并结合优先队列(堆优化)来解决单源最短路径问题,详细阐述了算法的时间复杂度优化从o(n^2)降低到o((n+m)logn)。并提供了2018年NOI Day 1 T1题目背景和样例,以及数据更新情况。
摘要由CSDN通过智能技术生成

题目背景

2018 年 7 月 19 日,某位同学在 NOI Day 1 T1 归程 一题里非常熟练地使用了一个广为人知的算法求最短路。

然后呢?

100 \rightarrow 60100→60;

Ag \rightarrow CuAg→Cu;

最终,他因此没能与理想的大学达成契约。

小 F 衷心祝愿大家不再重蹈覆辙。

题目描述

给定一个 NN 个点,MM 条有向边的带非负权图,请你计算从 SS 出发,到每个点的距离。

数据保证你能从 SS 出发到任意点。

输入格式

第一行为三个正整数 N, M, SN,M,S。 第二行起 MM 行,每行三个非负整数 u_i, v_i, w_iui​,vi​,wi​,表示从 u_iui​ 到 v_ivi​ 有一条权值为 w_iwi​ 的边。

输出格式

输出一行 NN 个空格分隔的非负整数,表示 SS 到每个点的距离。

输入输出样例

输入 #1复制

4 6 1
1 2 2
2 3 2
2 4 1
1 3 5
3 4 3
1 4 4

输出 #1复制

0 2 4 3

说明/提示

样例解释请参考 数据随机的模板题

1 \leq N \leq 1000001≤N≤100000;

1 \leq M \leq 2000001≤M≤20

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值