在给定的N个整数A1,A2……AN中选出两个进行xor(异或)运算,得到的结果最大是多少?
输入格式
第一行输入一个整数N。
第二行输入N个整数A1~AN。
输出格式
输出一个整数表示答案。
数据范围
1≤N≤105,
0≤Ai<2^31
输入样例:
3
1 2 3
输出样例:
3
思路:
用Trie(字典树),建树时,根据每个数字的对应的二进制串构造一个二叉树,每个结点两个分支,分支指向的两个son结点分别表示当前位的数值为0或1,记录每次输入的数字转化成的二进制串,当前位为1,就走到数值为1的结点,否则走到0结点,这样每个数字对应的Trie中的路径就是唯一的。
因为要求异或值最大,所以用贪心的思想,在第一个数字固定的情况下,尽可能地让第二个数的每一位都与第一个数的对应位相反,这样最终确定的第二个数与第一个数的异或值就最大,所以在查询时,遍历第一个串o(n),根据固定的第一个二进制串,每次尽可能走到与当前位的值相反的结点,这样的路径对应的就是与第一个二进制串异或值最大的二进制串,便利了这个数的位数次o(logn),所以总的时间复杂度o(n*logn);
完整代码:
#include <iostream>
#include <algorithm>
using namespace std;
const int maxn=3e6+5;
int n,a[maxn];
int son[maxn][2],idx;
void insert(int x)
{
int p=0;
for(int i=30;~i;i--){//最大0-30共31位,从最高位30位开始往前枚举每一位
int &s=son[p][x>>i&1];//x从右往左第i位是几就走到值为几的结点
if(!s) s=++idx;
p=s;
}
}
int query(int x)
{
int p=0,res=0;
for(int i=30;~i;i--){
int k=x>>i&1;
if(!son[p][!k]) p=son[p][k];//若数值与当数字前位的数值相反的结点不存在,则只能走到与当前位数值相同的结点
else{
p=son[p][!k];//否则尽可能走到与当前位数值相反的结点,这样按位异或结果最大
res+=1<<i;//当前为数值与当数字前位的数值相反的结点,所以当前位异或结果为1,算上位的权值,对最终结果的贡献值就是1<<i
}
}
return res;
}
int main()
{
cin>>n;
for(int i=0;i<n;i++){
cin>>a[i];
insert(a[i]);
}
int ans=0;
for(int i=0;i<n;i++) ans=max(ans,query(a[i]));
cout<<ans<<endl;
return 0;
}