最少拦截系统 (dp:求最长递增子序列长度)

该文介绍了如何使用动态规划(DP)解决导弹拦截系统的问题,核心是找到最少的拦截系统数量,即求解最长非递减子序列的长度。通过优化,将原本O(n^2)的时间复杂度降低到O(n*logn),实现了效率提升。
摘要由CSDN通过智能技术生成

某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统.但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能超过前一发的高度.某天,雷达捕捉到敌国的导弹来袭.由于该系统还在试用阶段,所以只有一套系统,因此有可能不能拦截所有的导弹. 
怎么办呢?多搞几套系统呗!你说说倒蛮容易,成本呢?成本是个大问题啊.所以俺就到这里来求救了,请帮助计算一下最少需要多少套拦截系统. 

Input

输入若干组数据.每组数据包括:导弹总个数(正整数),导弹依此飞来的高度(雷达给出的高度数据是不大于30000的正整数,用空格分隔) 

Output

对应每组数据输出拦截所有导弹最少要配备多少套这种导弹拦截系统. 

Sample Input

8 389 207 155 300 299 170 158 65

Sample Output

2

       一开始理解错题意了,以为一个系统的导弹是连续发射的(一次只用一个系统),就是找有几个非递增序列,这是错误的;后来突然意识到没那么简单,这其中有坑,那就是一个系统的导弹的发射可以不连续(因为是多个系统同时拦截,当前有能拦截的,那其他系统就不用发射了),这样当飞来一个导弹时,要看当前所有的系统能否拦截。

完整代码:

#include <iostream>
#include <cstdio>
#define int long long
const int maxn=3e4+5;
using namespace std;
int a[maxn]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值