最近学习各种算法,上网找到有些讲解的很透彻,这里转载借鉴学习下
归并排序是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。
首先考虑下如何将将二个有序数列合并。这个非常简单,只要从比较二个数列的第一个数,谁小就先取谁,取了后就在对应数列中删除这个数。然后再进行比较,如果有数列为空,那直接将另一个数列的数据依次取出即可。
例如:无序数组[6 2 4 1 5 9]
第一步 [6 2 4 1 5 9]原始状态
第二步 [2 6] [1 4] [5 9]两两合并排序
第三步
1、顺序从第一,第二个数组里取出一个数字:2和1比较大小后将小的放入第三个数组,此时变成下边这样
第一个数组[2 6] ,第二个数组[4],第三个数组[1]
2、继续刚才的步骤,顺序从第一,第二个数组里取数据,2和4,同样的比较大小后将小的放入第三个数组,此时状态如下
第一个数组[6],第二个数组[4],第三个数组[1 2]
3、再重复前边的步骤变成,将较小的4放入第三个数组后变成如下状态
第一个数组[6],第二个数组[...],第三个数组[1 2 4]
4、最后将6放入,排序完毕
第一个数组[...],第二个数组[...],第三个数组[1 2 4 6]
<span style="font-family:FangSong_GB2312;font-size:18px;">//将有序数组a[]和b[]合并到c[]中
</span>void MemeryArray(int a[], int n, int b[], int m, int c[])
{
int i, j, k;
i = j = k = 0;
while (i < n && j < m)
{
if (a[i] < b[j])
c[k++] = a[i++];
else
c[k++] = b[j++];
}
while (i < n)
c[k++] = a[i++];
while (j < m)
c[k++] = b[j++];
}
可以看出合并有序数列的效率是比较高的,可以达到O(n)。
解决了上面的合并有序数列问题,再来看归并排序,其的基本思路就是将数组分成二组A,B,如果这二组组内的数据都是有序的,那么就可以很方便的将这二组数据进行排序。如何让这二组组内数据有序了?
可以将A,B组各自再分成二组。依次类推,当分出来的小组只有一个数据时,可以认为这个小组组内已经达到了有序,然后再合并相邻的二个小组就可以了。这样通过先递归的分解数列,再合并数列就完成了归并排序。
//将有二个有序数列a[first...mid]和a[mid...last]合并。
void mergearray(int a[], int first, int mid, int last, int temp[])
{
int i = first, j = mid + 1;
int m = mid, n = last;
int k = 0;
while (i <= m && j <= n)
{
if (a[i] <= a[j])
temp[k++] = a[i++];
else
temp[k++] = a[j++];
}
while (i <= m)
temp[k++] = a[i++];
while (j <= n)
temp[k++] = a[j++];
for (i = 0; i < k; i++)
a[first + i] = temp[i];
}
void mergesort(int a[], int first, int last, int temp[])
{
if (first < last)
{
int mid = (first + last) / 2;
mergesort(a, first, mid, temp); //左边有序
mergesort(a, mid + 1, last, temp); //右边有序
mergearray(a, first, mid, last, temp); //再将二个有序数列合并
}
}
bool MergeSort(int a[], int n)
{
int *p = new int[n];
if (p == NULL)
return false;
mergesort(a, 0, n - 1, p);
delete[] p;
return true;
}
归并排序的效率是比较高的,设数列长为N,将数列分开成小数列一共要logN步,每步都是一个合并有序数列的过程,时间复杂度可以记为O(N),故一共为O(N*logN)。因为归并排序每次都是在相邻的数据中进行操作,所以归并排序在O(N*logN)的几种排序方法(快速排序,归并排序,希尔排序,堆排序)也是效率比较高的。
转载地址:http://blog.csdn.net/morewindows/article/details/6678165,该博客还有其他排序算法!!