HBase数据导入方法总结(第一部分)

本文介绍了将数据从Oracle数据库导入HBase的五种方法,包括JDBC & HBase Client API、MapReduce Job/TableReducer、importtsv、bulk load和Sqoop。详细讲述了每种方法的优缺点和操作步骤,特别强调了JDBC读取和HBase数据导入的实现过程。
摘要由CSDN通过智能技术生成

引言

HBase作为Apache软件基金会的一个顶级项目,目前在业界有着广泛的使用。HBase是Google BigTable的开源实现,运行在HDFS文件系统之上,为Hadoop提供类似于BigTable的分布式数据存放服务。在Eric Brewer的CAP理论中,HBase属于CP类型的系统,即保证了系统的一致性和对分区容忍性,具体可以自行google CAP理论。

最近在做一个大数据项目,需要将原本oracle数据库中的数据导入到HBase中,所以做了一个简单的HBase数据导入总结。目前我已知的并且实验可行的方法有一下几种:
1. JDBC & HBase Client API
2. MapReduce Job/TableReducer
3. Importtsv(unbulk load)
4. bulk load(importtsv | MapReduce Job)
5. Sqoop

先简要介绍下每种方法:
方法1:最基本的数据导入方法。首先通过JDBC将原本关系型数据库中的数据读出到内存中,然后在使用HBase自带的客户端API将数据put到相应的表中。这种方法通用性强,只要写好接口就可以用,但是效率并不高。
方法2:使用这种方法之前其实是需要先将数据导出到本地,以文本的形式保存,然后使用TableReudcer类编写MapReduce job。这种方法需要频繁的I/O操作,所以效率不高,容易导致HBase节点的不稳定。
方法3:importtsv是HBase内置的数据导入工具,目的是将tsv格式的文件加载到HBase中,本质上它是通过调用MapReudce Job实现数据导入的。注意:使用该方法,需要提前将数据导出到本地,以tsv格式存储。unbulk load模式的importtsv效果一般,适用于小型的数据。
方法4:bulk load是一个快速大量数据高效导入工具,相比于importtsv效率更高。
方法5:Sqoop是apache软件基金会的一个项目,可以用来实现关系型数据库和hdfs,hbase,hive之间的数据高效传输。只需要做一些简单的配置,通过Sqoop命令行指令就可以方便的实现数据导入和导出。

下面具体介绍每种方法的做法:

JDBC & HBase Client API

此处以MySql为例。首先在MySql数据库中创建database ‘test’,然后创建一张表’Info’,这里可以使用可视化软件(例如workbench),也可以直接在命令行输入相应指令:

:~$mysql -u root -p #root用户登录mysql
#创建Info表
CREATE TABLE Info (`ID` INT NOT NULL,
                   `Name` VARCHAR(45) NOT NULL,
                   `Number` INT NOT NULL,
                   `Time` VARCHAR(45) NOT NULL,
                   PRIMARY KEY (`ID`));

然后使用load指令将准备好的数据导入到Info中。数据格式与Info各字

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值