【conda虚拟环境安装CUDA路径】

写给初学者(我)看的
因为直接在服务器上安装CUDA找默认路径一点问题也没有
但是在anaconda创建的虚拟环境中 安装了CUDA以后 路径在哪可能会是比较多人的疑问
所以特地记录下来 以便以后忘记了查阅使用

安装cuda:

conda install cudatoolkit=8.0 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/linux-64/

安装cudnn:

conda install cudnn=7.0.5 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/linux-64/

下图展示的就是安装CUDA和CUDNN以后的路径。
这里的安装路径没有单独形成cuda文件夹,都是统一存放在envs下的虚拟环境lib、include文件夹下。
安装的cuda和cudnn在虚拟环境中的位置

conda是一个流行的Python包管理工具,它允许你在项目中创建独立的软件环境,以便管理和隔离不同的依赖项。如果你想在Conda环境中安装CUDA(Compute Unified Device Architecture)和CUDNN(CUDA Deep Neural Network Library),这是一个针对GPU加速深度学习的库,你可以按照以下步骤操作: 1. **创建新环境**: 首先,你需要激活一个现有的或创建一个新的Conda环境。例如,如果你想要创建一个名为`cuda_env`的新环境,运行: ``` conda create -n cuda_env python=3.8 # 指定Python版本,其他版本替换相应数值 conda activate cuda_env ``` 2. **安装CUDA**: CUDA通常需要从NVIDIA官网下载对应系统的安装文件,然后通过命令行(如`bash`或`powershell`)手动安装。由于这是特定于平台的操作,你可以在官方文档中找到适合你系统的安装指南。安装完成后,添加CUDA路径到系统环境变量。 3. **安装CuDNN**: CuDNN同样需要单独下载并安装。首先在NVIDIA Developer网站上获取CuDNN,然后解压。接着,在Conda环境中安装,可以使用`conda install cudnn`,但是这取决于CuDNN是否提供conda包。如果没有,你可能需要将头文件和库手动链接到你的环境。 4. **验证安装**: 安装完成后,你可以使用`nvcc --version`检查CUDA编译器,`python -c "import torch; print(torch.cuda.is_available())"`测试是否能导入Cuda模块,并确认Cudnn是否可用。
评论 24
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值