图神经网络(Graph Neural Network)在社交网络、推荐系统、知识图谱上的效果初见端倪,成为近2年大热的一个研究热点。然而,什么是图神经网络?图和神经网络为什么要关联?怎么关联?
本文简单介绍GNN的灵感来源,构造方法,训练方式等,根据论文《Representation Learning on Networks》中GNN部分,做了进一步的解释,并增补了一些代码中才有的实现细节,以便后续学习和理解。
代码链接:GitHub - leichaocn/graph_representation_learning
1 卷积神经网络的启示
回顾对图像的简单卷积:
图1 卷积神经网络的基本操作
如图1所示:一幅图(image)所抽取的特征图(也就是特征向量)里每个元素,可以理解为图(image)上的对应点的像素及周边点的像素的加权和(还需要再激活一下)。
同样可以设想:一个图(graph)所抽取的特征图里的每个元素,也可以理解为图(graph)上对应节点的向量与周边节点的向量的加权和。
有几个概念需要说明:
特征向量:一条数据(image、word、node等)的数字化表示,是机器学习任务的必备输入。
embedding:更好的特征向量,蕴含潜在语义信息,是来自network训练后的结果,如果能找到优秀的embedding,将有效提升后面机器学习任务的性能表现。例如从word2vec网络中抽出的word embedding向量,“北京”“巴黎”这两个词就比较相似,因为都是首都;从CNN网络中抽出的image embedding,暹罗猫、无耳猫两个图片的向量就比较相似,因为都有猫。
features map :由cnn生成的特征向量,也就是image embedding。image 经过一层CNN前向传播后的输出,是一个二维的矩阵,只要进行拉直(flatten),就转变为了一维的特征向量。类似于全连接神经网络网络里每一层里都能获取的一维的特征向量。
这种迁移联想值得好好体会。
体会明白后,那具体怎么做呢?
2 核心想法
正如上面讨论的,归纳为一句话:用周围点的向量传播出自己的Embedding。
一个非常简单的例子就能搞明白。
图2 一个图例
对于图2来说,要计算节点A的Embedding,我们有以下的两条想法:
节点A的Embedding,是它的邻接节点B、C、D的Embedding传播的结果
而节点B、C、D的Embedding,又是由它们各自的邻接节点的Embedding传播的结果。
但是你可能会说,这样不断追溯,何时能结束?所以为了避免无穷无尽,我们就做两层,可以构造图3的传播关系。
图3 由两层传播生成节点A的Embedding
第0层即输入层,为每个节点的初始向量(根据所处领域里特征数据进行构建),不妨称为初始Embedding。
第一层
节点B的Embedding来自它的邻接点A、C的Embedding的传播。
节点C的Embedding来自它的邻接点A、B、C、D的Embedding的传播。
节点D的Embedding来自它的邻接点A的Embedding的传播。
第二层
节点A的Embedding来自它的邻接点B、C、D的Embedding的传播。
好了,大概可能有点感觉了,可是传播到底是什么?图中的小方块里到底在什么什么?
(注意:图中所有的方块代表的操作均相同,大小、颜色的差异没有任何含义)
3 传播机制
小方块里做的就两件事:
收集(Aggregation)
简言之,就是对上一层的所有邻接节点的Embedding,如何进行汇总,获得一个Embedding,供本层进行更新。
更新(Update)
即对本层已“收集完毕”的邻接点数据,是否添加自身节点的上一层Embedding,如果是如何添加,如何激活,等等方式,最终输出本层的Embedding。
表达成数学公式,即下面这个式子:
先解释其中的符号含义:表示节点的Embedding,下标或表示节点的索引,上标表示第几层的意思,表示激活函数,和表示矩阵,表示节点的邻接点集合,AGG(⋅)表示收集操作。
这个公式的右边就做了两件事:
收集:即AGG(⋅)部分
更新:除了AGG(⋅)外的其他部分。
这个公式太抽象,我们举例说明三种常见的图神经网络,看看是如何设计的。
4 传播机制举例
4.1 基础版本
1)收集
即直接对上一层所有节点的Embedding求平均。
2)更新
即为用收集完毕的Embedding与本节点上一层的Embedding进行了加权和,然后再激活。显然,由于上一层Embedding与本层Embedding维度相同,所以和为方阵。
4.2 图卷积网络(Graph Convolutional Networks)
1)收集
由可知,收集的输入Embeddings不仅仅包括节点的邻接点们的Embedding,还包括节点自身的Embedding,而分母变成了,是一种更复杂的加权和,不仅考虑了节点的邻接点的个数,还考虑了每个邻接点自身的邻接接个数。(基础版本中的平均是最简单的加权和)
2)更新
显然比基础版本简单多了,不再考虑节点自己的上一层Embedding,直接让收集好的Embedding乘上矩阵后再激活完事。
之所以叫图卷积网络,是因为和卷积网络的套路类似,对自己和周边节点(像素)进行加权求和。
4.3 GraphSAGE
这不就是咱们上面提到的那个概念公式?是的,GraphSAGE由于其变体较多,所以需要用这个最抽象的公式来概括它。
1)收集
可以有如下的收集方式:
直接平均
这是最简单的收集方式
池化
LSTM
2)更新
收集好的Embedding经过矩阵变换,节点自己上一层的Embedding经过矩阵变换,我们即可得到两个Embedding,把它俩给按列拼接起来。
这里要注意:它俩不是相加;矩阵和矩阵都不是方阵,均自带降维功能。AGG(⋅)输出是d维,是d维,但是经过军阵变换后,它俩都成了d/2维,经过拼接,又恢复成d维。
5 训练的方式
无监督的训练
跑不同的Aggregation和Update方法,结合自定义的损失函数,都可以训练出这些权重。这里的自定义损失函数,需要根据你对节点Embedding的最终期望,让它附加上一个什么样的效果来设计。
例如word2vec利用序列中的上下文信息,用一个词预测周围词,构造分类损失来训练。图的无监督训练也可以用一个节点预测周围节点,构造分类损失来训练。当然,还有其他的无监督套路,这个视频不错(18min~21min):https://www.bilibili.com/video/av53422483/
在无监督任务中,获取经过神经网络优化的Embedding,就是我们的目的。
有监督的训练
如果我们想要实现节点分类,那么我们就需要有带标签的训练数据,设计损失函数,即可进行训练。
例如,我们有一批带label的图结构的数据,已经标记好了哪些是水军,哪些是普通用户。我们就可以构造如下的交叉熵损失函数。
图4 有监督训练中损失函数的构造
转换矩阵
注意其中的即节点的Embedding,是节点的label,那是什么鬼?
如刚才我们讨论的,图神经网络的传播结果,是所有节点经过“传播”优化的Embedding,这些Embedding的维度均为d维(在初始化时定义好的),而我们分类任务可能是c类,所以,需要再前向传播的最后一层,加入矩阵,把d维的输出映射成c维的输出,这样才能让交叉熵损失函数对应起来。
由于我们列举的是二分类任务,图4中也用的是二分类的交叉熵损失,因此只需要1维输出足矣,所以在这里的c为1,为一个向量(可视为把d维压缩为1维的特殊矩阵)。
在有监督任务中,获取经过神经网络优化的Embedding,还需要进行分类。所以Embedding不是目的,只是实现分类的手段。
6 一般的设计步骤
综上,各类图神经网络架构主要区别是:
传播机制的区别,即收集和更新的设计(图3中小方块)。
有无监督及损失函数的区别。
设计图神经网络的一般步骤是:
定义收集与更新方式。
定义损失函数。
在一批节点上进行训练。
生成Embedding,即使是模型未见过的Embedding,模型也可以对其初始化Embedding进行“传播优化”。
7 Node2Vec与GNN的对比
由于Embedding这个术语被以广义的方式,用了太多次,很容易导致混淆,所以这里对Embedding在不同状态时做一个总结。
8 总结
图神经网络是以邻接点Embedding的浅层传播来训练Embedding。
改变Aggregation和update的方式,可以构造不同的图神经网络;
既可以用无监督的方式获得Embedding,也可以用有监督的方式直接训练分类任务。
参考文献
[1] Jure Leskovec, 《Graph Representation Learning》
[2] Jure Leskovec, 《Representation Learning on Networks》
http://snap.stanford.edu/proj/embeddings-www/
文章仅用于学习使用,后续我将阅读最新的有关图神经网络的论文。