图神经网络(Graph Neural Networks)

图神经网络(Graph Neural Network)在社交网络、推荐系统、知识图谱上的效果初见端倪,成为近2年大热的一个研究热点。然而,什么是图神经网络?图和神经网络为什么要关联?怎么关联?

本文简单介绍GNN的灵感来源,构造方法,训练方式等,根据论文《Representation Learning on Networks》中GNN部分,做了进一步的解释,并增补了一些代码中才有的实现细节,以便后续学习和理解。

代码链接:GitHub - leichaocn/graph_representation_learning

1 卷积神经网络的启示

回顾对图像的简单卷积:

图1 卷积神经网络的基本操作

如图1所示:一幅图(image)所抽取的特征图(也就是特征向量)里每个元素,可以理解为图(image)上的对应点的像素及周边点的像素的加权和(还需要再激活一下)。

同样可以设想:一个图(graph)所抽取的特征图里的每个元素,也可以理解为图(graph)上对应节点的向量与周边节点的向量的加权和

有几个概念需要说明:

特征向量:一条数据(image、word、node等)的数字化表示,是机器学习任务的必备输入。
embedding:更好的特征向量,蕴含潜在语义信息,是来自network训练后的结果,如果能找到优秀的embedding,将有效提升后面机器学习任务的性能表现。例如从word2vec网络中抽出的word embedding向量,“北京”“巴黎”这两个词就比较相似,因为都是首都;从CNN网络中抽出的image embedding,暹罗猫、无耳猫两个图片的向量就比较相似,因为都有猫。
features map :由cnn生成的特征向量,也就是image embedding。image 经过一层CNN前向传播后的输出,是一个二维的矩阵,只要进行拉直(flatten),就转变为了一维的特征向量。类似于全连接神经网络网络里每一层里都能获取的一维的特征向量。

这种迁移联想值得好好体会。

体会明白后,那具体怎么做呢?

2 核心想法

正如上面讨论的,归纳为一句话:用周围点的向量传播出自己的Embedding

一个非常简单的例子就能搞明白。

图2 一个图例

对于图2来说,要计算节点A的Embedding,我们有以下的两条想法:

  • 节点A的Embedding,是它的邻接节点B、C、D的Embedding传播的结果

  • 而节点B、C、D的Embedding,又是由它们各自的邻接节点的Embedding传播的结果。

但是你可能会说,这样不断追溯,何时能结束?所以为了避免无穷无尽,我们就做两层,可以构造图3的传播关系。

图3 由两层传播生成节点A的Embedding

第0层即输入层,为每个节点的初始向量(根据所处领域里特征数据进行构建),不妨称为初始Embedding。

  • 第一层

节点B的Embedding来自它的邻接点A、C的Embedding的传播。

节点C的Embedding来自它的邻接点A、B、C、D的Embedding的传播。

节点D的Embedding来自它的邻接点A的Embedding的传播。

  • 第二层

节点A的Embedding来自它的邻接点B、C、D的Embedding的传播。

好了,大概可能有点感觉了,可是传播到底是什么?图中的小方块里到底在什么什么?

(注意:图中所有的方块代表的操作均相同,大小、颜色的差异没有任何含义)

3 传播机制

小方块里做的就两件事:

  • 收集(Aggregation)

简言之,就是对上一层的所有邻接节点的Embedding,如何进行汇总,获得一个Embedding,供本层进行更新。

  • 更新(Update)

即对本层已“收集完毕”的邻接点数据,是否添加自身节点的上一层Embedding,如果是如何添加,如何激活,等等方式,最终输出本层的Embedding。

表达成数学公式,即下面这个式子:

先解释其中的符号含义:表示节点的Embedding,下标表示节点的索引,上标表示第几层的意思,表示激活函数,表示矩阵,表示节点的邻接点集合,AGG(⋅)表示收集操作。

这个公式的右边就做了两件事:

  • 收集:即AGG(⋅)部分

  • 更新:除了AGG(⋅)外的其他部分。

这个公式太抽象,我们举例说明三种常见的图神经网络,看看是如何设计的。

4 传播机制举例

4.1 基础版本

1)收集

即直接对上一层所有节点的Embedding求平均。

2)更新

即为用收集完毕的Embedding与本节点上一层的Embedding进行了加权和,然后再激活。显然,由于上一层Embedding与本层Embedding维度相同,所以为方阵。

4.2 图卷积网络(Graph Convolutional Networks)

1)收集

可知,收集的输入Embeddings不仅仅包括节点的邻接点们的Embedding,还包括节点自身的Embedding,而分母变成了,是一种更复杂的加权和,不仅考虑了节点的邻接点的个数,还考虑了每个邻接点自身的邻接接个数。(基础版本中的平均是最简单的加权和)

2)更新

显然比基础版本简单多了,不再考虑节点自己的上一层Embedding,直接让收集好的Embedding乘上矩阵后再激活完事。

之所以叫图卷积网络,是因为和卷积网络的套路类似,对自己和周边节点(像素)进行加权求和。

4.3 GraphSAGE

这不就是咱们上面提到的那个概念公式?是的,GraphSAGE由于其变体较多,所以需要用这个最抽象的公式来概括它。

1)收集

可以有如下的收集方式:

  • 直接平均

这是最简单的收集方式

  • 池化

  • LSTM

2)更新

收集好的Embedding经过矩阵变换,节点自己上一层的Embedding经过矩阵变换,我们即可得到两个Embedding,把它俩给按列拼接起来。

这里要注意:它俩不是相加;矩阵和矩阵都不是方阵,均自带降维功能。AGG(⋅)输出是d维,是d维,但是经过军阵变换后,它俩都成了d/2维,经过拼接,又恢复成d维。

5 训练的方式

无监督的训练

跑不同的Aggregation和Update方法,结合自定义的损失函数,都可以训练出这些权重。这里的自定义损失函数,需要根据你对节点Embedding的最终期望,让它附加上一个什么样的效果来设计。

例如word2vec利用序列中的上下文信息,用一个词预测周围词,构造分类损失来训练。图的无监督训练也可以用一个节点预测周围节点,构造分类损失来训练。当然,还有其他的无监督套路,这个视频不错(18min~21min):https://www.bilibili.com/video/av53422483/

在无监督任务中,获取经过神经网络优化的Embedding,就是我们的目的。

有监督的训练

如果我们想要实现节点分类,那么我们就需要有带标签的训练数据,设计损失函数,即可进行训练。

例如,我们有一批带label的图结构的数据,已经标记好了哪些是水军,哪些是普通用户。我们就可以构造如下的交叉熵损失函数。

图4 有监督训练中损失函数的构造

  • 转换矩阵

注意其中的即节点的Embedding,是节点的label,那是什么鬼?

如刚才我们讨论的,图神经网络的传播结果,是所有节点经过“传播”优化的Embedding,这些Embedding的维度均为d维(在初始化时定义好的),而我们分类任务可能是c类,所以,需要再前向传播的最后一层,加入矩阵,把d维的输出映射成c维的输出,这样才能让交叉熵损失函数对应起来。

由于我们列举的是二分类任务,图4中也用的是二分类的交叉熵损失,因此只需要1维输出足矣,所以在这里的c为1,为一个向量(可视为把d维压缩为1维的特殊矩阵)。

在有监督任务中,获取经过神经网络优化的Embedding,还需要进行分类。所以Embedding不是目的,只是实现分类的手段。

6 一般的设计步骤

综上,各类图神经网络架构主要区别是:

传播机制的区别,即收集和更新的设计(图3中小方块)。

有无监督及损失函数的区别。

设计图神经网络的一般步骤是:

  1. 定义收集与更新方式。

  1. 定义损失函数。

  1. 在一批节点上进行训练。

  1. 生成Embedding,即使是模型未见过的Embedding,模型也可以对其初始化Embedding进行“传播优化”。

7 Node2Vec与GNN的对比

由于Embedding这个术语被以广义的方式,用了太多次,很容易导致混淆,所以这里对Embedding在不同状态时做一个总结。

8 总结

  • 图神经网络是以邻接点Embedding的浅层传播来训练Embedding。

  • 改变Aggregation和update的方式,可以构造不同的图神经网络;

  • 既可以用无监督的方式获得Embedding,也可以用有监督的方式直接训练分类任务。

参考文献

[1] Jure Leskovec, 《Graph Representation Learning》

[2] Jure Leskovec, 《Representation Learning on Networks》

http://snap.stanford.edu/proj/embeddings-www/

文章仅用于学习使用,后续我将阅读最新的有关图神经网络的论文。

  • 3
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值