图神经网络(Graph Neural Networks)

本文介绍了图神经网络(GNN)的概念,通过与卷积神经网络的类比,阐述了GNN如何通过邻接节点的向量传播生成节点的Embedding。文章探讨了GNN的传播机制,包括收集(Aggregation)和更新(Update)过程,并举例说明了基础版本、图卷积网络(GCN)和GraphSAGE等不同类型的GNN。此外,还讨论了无监督和有监督的训练方式以及损失函数的设计。最后,文章提到了Node2Vec与GNN的区别,并总结了GNN的核心特点和应用。
摘要由CSDN通过智能技术生成

图神经网络(Graph Neural Network)在社交网络、推荐系统、知识图谱上的效果初见端倪,成为近2年大热的一个研究热点。然而,什么是图神经网络?图和神经网络为什么要关联?怎么关联?

本文简单介绍GNN的灵感来源,构造方法,训练方式等,根据论文《Representation Learning on Networks》中GNN部分,做了进一步的解释,并增补了一些代码中才有的实现细节,以便后续学习和理解。

代码链接:GitHub - leichaocn/graph_representation_learning

1 卷积神经网络的启示

回顾对图像的简单卷积:

图1 卷积神经网络的基本操作

如图1所示:一幅图(image)所抽取的特征图(也就是特征向量)里每个元素,可以理解为图(image)上的对应点的像素及周边点的像素的加权和(还需要再激活一下)。

同样可以设想:一个图(graph)所抽取的特征图里的每个元素,也可以理解为图(graph)上对应节点的向量与周边节点的向量的加权和

有几个概念需要说明:

特征向量:一条数据(image、word、node等)的数字化表示,是机器学习任务的必备输入。
embedding:更好的特征向量,蕴含潜在语义信息,是来自network训练后的结果,如果能找到优秀的embedding,将有效提升后面机器学习任务的性能表现。例如从word2vec网络中抽出的word embedding向量,“北京”“巴黎”这两个词就比较相似,因为都是首都;从CNN网络中抽出的image embedding,暹罗猫、无耳猫两个图片的向量就比较相似,因为都有猫。
features map :由cnn生成的特征向量,也就是image embedding。image 经过一层CNN前向传播后的输出,是一个二维的矩阵,只要进行拉直(flatten),就转变为了一维的特征向量。类似于全连接神经网络网络里每一层里都能获取的一维的特征向量。

这种迁移联想值得好好体会。

体会明白后,那具体怎么做呢?

2 核心想法

正如上面讨论的,归纳为一句话:用周围点的向量传播出自己的Embedding

一个非常简单的例子就能搞明白。

图2 一个图例

对于图2来说,要计算节点A的Embedding,我们有以下的两条想法:

  • 节点A的Embedding,是它的邻接节点B、C、D的Embedding传播的结果

  • 而节点B、C、D的Embedding,又是由它们各自的邻接节点的Embedding传播的结果。

但是你可能会说,这样不断追溯,何时能结束?所以为了避免无穷无尽,我们就做两层,可以构造图3的传播关系。

图3 由两层传播生成节点A的Embedding

第0层即输入层,为每个节点的初始向量(根据所处领域里特征数据进行构建),不妨称为初始Embedding。

  • 第一层

节点B的Embedding来自它的邻接点A、C的Embedding的传播。

节点C的Embedding来自它的邻接点A、B、C、D的Embedding的传播。

节点D的Embedding来自它的邻接点A的Embedding的传播。

  • 第二层

节点A的Embedding来自它的邻接点B、C、D的Embedding的传播。

好了,大概可能有点感觉了,可是传播到底是什么?图中的小方块里到底在什么什么?

(注意:图中所有的方块代表的操作均相同,大小、颜色的差异没有任何含义)

3 传播机制

小方块里做的就两件事:

  • 收集(Aggregation)

简言之,就是对上一层的所有邻接节点的Embedding,如何进行汇总,获得一个Embedding,供本层进行更新。

  • 更新(Update)

即对本层已“收集完毕”的邻接点数据,是否添加自身节点的上一层Embedding,如果是如何添加,如何激活,等等方式,最终输出本层的Embedding。

表达成数学公式,即下面这个式子:

先解释其中的符号含义:表示节点的Embedding,下标表示节点的索引,上标表示第几层的意思,表示激活函数,表示矩阵,表示节点的邻接点集合,AGG(⋅)表示收集操作。

这个公式的右边就做了两件事:

  • 收集:即AGG(⋅)部分

  • 更新:除了AGG(⋅)外的其他部分。

这个公式太抽象,我们举例说明三种常见的图神经网络,看看是如何设计的。

4 传播机制举例

4.1 基础版本

1)收集

即直接对上一层所有节点的Embedding求平均。

2)更新

即为用收集完毕的Embedding与本节点上一层的Embedding进行了加权和,然后再激活。显然,由于上一层Embedding与本层Embedding维度相同,所以为方阵。

4.2 图卷积网络(Graph Convolutional Networks)

1)收集

可知,收集的输入Embeddings不仅仅包括节点的邻接点们的Embedding,还包括节点自身的Embedding,而分母变成了,是一种更复杂的加权和,不仅考虑了节点的邻接点的个数,还考虑了每个邻接点自身的邻接接个数。(基础版本中的平均是最简单的加权和)

2)更新

显然比基础版本简单多了,不再考虑节点自己的上一层Embedding,直接让收集好的Embedding乘上矩阵后再激活完事。

之所以叫图卷积网络,是因为和卷积网络的套路类似,对自己和周边节点(像素)进行加权求和。

4.3 GraphSAGE

这不就是咱们上面提到的那个概念公式?是的,GraphSAGE由于其变体较多,所以需要用这个最抽象的公式来概括它。

1)收集

可以有如下的收集方式:

  • 直接平均

这是最简单的收集方式

  • 池化

  • LSTM

2)更新

收集好的Embedding经过矩阵变换,节点自己上一层的Embedding经过矩阵变换,我们即可得到两个Embedding,把它俩给按列拼接起来。

这里要注意:它俩不是相加;矩阵和矩阵都不是方阵,均自带降维功能。AGG(⋅)输出是d维,是d维,但是经过军阵变换后,它俩都成了d/2维,经过拼接,又恢复成d维。

5 训练的方式

无监督的训练

跑不同的Aggregation和Update方法,结合自定义的损失函数,都可以训练出这些权重。这里的自定义损失函数,需要根据你对节点Embedding的最终期望,让它附加上一个什么样的效果来设计。

例如word2vec利用序列中的上下文信息,用一个词预测周围词,构造分类损失来训练。图的无监督训练也可以用一个节点预测周围节点,构造分类损失来训练。当然,还有其他的无监督套路,这个视频不错(18min~21min):https://www.bilibili.com/video/av53422483/

在无监督任务中,获取经过神经网络优化的Embedding,就是我们的目的。

有监督的训练

如果我们想要实现节点分类,那么我们就需要有带标签的训练数据,设计损失函数,即可进行训练。

例如,我们有一批带label的图结构的数据,已经标记好了哪些是水军,哪些是普通用户。我们就可以构造如下的交叉熵损失函数。

图4 有监督训练中损失函数的构造

  • 转换矩阵

注意其中的即节点的Embedding,是节点的label,那是什么鬼?

如刚才我们讨论的,图神经网络的传播结果,是所有节点经过“传播”优化的Embedding,这些Embedding的维度均为d维(在初始化时定义好的),而我们分类任务可能是c类,所以,需要再前向传播的最后一层,加入矩阵,把d维的输出映射成c维的输出,这样才能让交叉熵损失函数对应起来。

由于我们列举的是二分类任务,图4中也用的是二分类的交叉熵损失,因此只需要1维输出足矣,所以在这里的c为1,为一个向量(可视为把d维压缩为1维的特殊矩阵)。

在有监督任务中,获取经过神经网络优化的Embedding,还需要进行分类。所以Embedding不是目的,只是实现分类的手段。

6 一般的设计步骤

综上,各类图神经网络架构主要区别是:

传播机制的区别,即收集和更新的设计(图3中小方块)。

有无监督及损失函数的区别。

设计图神经网络的一般步骤是:

  1. 定义收集与更新方式。

  1. 定义损失函数。

  1. 在一批节点上进行训练。

  1. 生成Embedding,即使是模型未见过的Embedding,模型也可以对其初始化Embedding进行“传播优化”。

7 Node2Vec与GNN的对比

由于Embedding这个术语被以广义的方式,用了太多次,很容易导致混淆,所以这里对Embedding在不同状态时做一个总结。

8 总结

  • 图神经网络是以邻接点Embedding的浅层传播来训练Embedding。

  • 改变Aggregation和update的方式,可以构造不同的图神经网络;

  • 既可以用无监督的方式获得Embedding,也可以用有监督的方式直接训练分类任务。

参考文献

[1] Jure Leskovec, 《Graph Representation Learning》

[2] Jure Leskovec, 《Representation Learning on Networks》

http://snap.stanford.edu/proj/embeddings-www/

文章仅用于学习使用,后续我将阅读最新的有关图神经网络的论文。

《Introduction to Graph Neural Networks》是一本介绍神经网络的PDF。神经网络是一类用于处理结构数据的深度学习模型。该PDF主要介绍了神经网络的基本概念、结构和应用。 首先,PDF简要介绍了神经网络的起源和发展背景。它指出传统的神经网络模型无法有效地处理结构数据中的关系和局部信息,而神经网络的出现填补了这一空白。 接着,PDF详细解释了神经网络的基本概念。它提到神经网络通过将节点和边表示为向量,利用卷积操作来更新节点的表示,从而融合了节点的邻居信息。同时,它还介绍了神经网络在处理无向、有向和多时的不同形式和应用。 然后,PDF分析了神经网络的结构。它介绍了常见的神经网络结构,如Graph Convolutional Networks (GCN)、GraphSAGE和Graph Attention Networks (GAT)等。对于每种结构,PDF详细解释了其原理和在实践中的应用。 最后,PDF总结了神经网络的应用领域。它指出神经网络在社交网络分析、化学分子表示、推荐系统和计算机视觉等领域有广泛的应用。并且,它还提供了一些成功案例和相关论文的引用。 综上所述,《Introduction to Graph Neural Networks》这本PDF全面而详细地介绍了神经网络的基本概念、结构和应用。对于对神经网络感兴趣的读者来说,这本PDF是一份很好的入门资料。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值