给一个二维 rows x columns
的地图 heights
,其中 heights[row][col]
表示格子 (row, col)
的高度。一开始你在最左上角的格子 (0, 0)
,且你希望去最右下角的格子 (rows-1, columns-1)
(注意下标从 0 开始编号)。你每次可以往 上,下,左,右 四个方向之一移动,你想要找到耗费 体力 最小的一条路径。
一条路径耗费的 体力值 是路径上相邻格子之间 高度差绝对值 的 最大值 决定的。
请你返回从左上角走到右下角的最小 体力消耗值 。
思路:可以把此问题抽象成一个图,既然要计算每两个顶点高度差的绝对值,可以把这个高度差的绝对值看作是一条边的权重。另外创建一个辅助类来保存初始点到各个顶点的体力消耗值。
class State{
int x;
int y;
int height; // 初始点到该点的体力消耗值
public State(int x, int y, int height) {
this.x = x;
this.y = y;
this.height = height;
}
}
代码:
public class Solution {
class State{
int x;
int y;
int height; // 初始点到该点的体力消耗值
public State(int x, int y, int height) {
this.x = x;
this.y = y;
this.height = height;
}
}
int m;
int n;
public int minimumEffortPath(int[][] heights) {
m = heights.length;
n = heights[0].length;
List<int[]>[][] graph = new LinkedList[m][n];
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
graph[i][j] = new LinkedList<>();
}
}
// 构建图
for (int k = 0; k < m; k++) {
for (int l = 0; l < n; l++) {
if (k - 1 >= 0) {
graph[k][l].add(new int[]{k - 1, l, Math.abs(heights[k - 1][l] - heights[k][l])});
}
if (k + 1 < m) {
graph[k][l].add(new int[]{k + 1, l, Math.abs(heights[k + 1][l] - heights[k][l])});
}
if (l - 1 >= 0) {
graph[k][l].add(new int[]{k, l - 1, Math.abs(heights[k][l - 1] - heights[k][l])});
}
if (l + 1 < n) {
graph[k][l].add(new int[]{k, l + 1, Math.abs(heights[k][l + 1] - heights[k][l])});
}
}
}
int ans = dijkstra(graph);
return ans;
}
private int dijkstra(List<int[]>[][] graph) {
// 优先级队列,height 较小的排在前面
Queue<State> queue = new PriorityQueue<>((a, b) -> {
return a.height - b.height;
});
queue.offer(new State(0, 0, 0));
// 定义:probTo[x][y] 的值就是节点 (0,0) 到达节点 (x,y) 的最小体力消耗值
int[][] probTo = new int[m][n];
// 初始化为一个取不到的最大值
for (int i = 0; i < m; i++) {
Arrays.fill(probTo[i], Integer.MAX_VALUE);
}
probTo[0][0] = 0;
while (!queue.isEmpty()) {
State cur = queue.poll();
int x = cur.x;
int y = cur.y;
int height = cur.height;
if (x == m-1 && y == n-1) {
return height;
}
if (height > probTo[x][y]) {
continue;
}
for (int[] loc : graph[x][y]) {
int next_x = loc[0];
int next_y = loc[1];
int next_h = Math.max(height, loc[2]);
if(next_h < probTo[next_x][next_y]){
probTo[next_x][next_y] = next_h;
queue.offer(new State(next_x, next_y, next_h));
}
}
}
return -1;
}
}