最近学习图论的一串小结之一
完全图&完全子图&最大完全子图
完全图:任意两点都恰有一条边相连的图(任意两点都相邻)。
完全子图:满足任意两点都恰有一条边相连的子图,也叫团。
最大完全子图:所有完全子图中顶点数最大的团,即最大团。
极大团(maximal clique)当且仅当它不是其他团的子图,最大团(maximum clique)当且仅当它的点集模最大。
图1
图1中{'a','b','d'},{'a','e'},{'c','f','g'}等都是完全子图。
图1的最大完全子图为{'a','b','d','e'}。
连通图&极大连通子图&连通分量:
连通图:如果无向图中任意一对顶点都是连通的,则称此图是连通图。
极大连通子图:无向图的一个不被另外任何一个连通子图所包含的子图,连通图只有唯一一个极大连通子图,就是它本身。
连通分量:非连通图有多个极大连通子图,非连通图的极大连通子图叫做连通分量,每个分量都是一个连通图。
图1
所以图1的极大连通子图是它本身 {'a', 'b', 'c', 'd', 'e', 'f', 'g'}。
图2
图2的连通分量为 {'a', 'b', 'd', 'e'}和{'c', 'f', 'g'}。