最大完全子图和极大连通子图

专栏收录该内容
3 篇文章 0 订阅

最近学习图论的一串小结之一

完全图&完全子图&最大完全子图

完全图:任意两点都恰有一条边相连的图(任意两点都相邻)。

完全子图:满足任意两点都恰有一条边相连的子图,也叫团。

最大完全子图:所有完全子图中顶点数最大的团,即最大团。

极大团(maximal clique)当且仅当它不是其他团的子图,最大团(maximum clique)当且仅当它的点集模最大。

图1

图1中{'a','b','d'},{'a','e'},{'c','f','g'}等都是完全子图。

图1的最大完全子图为{'a','b','d','e'}。

 

连通图&极大连通子图&连通分量:

连通图:如果无向图中任意一对顶点都是连通的,则称此图是连通图。

极大连通子图:无向图的一个不被另外任何一个连通子图所包含子图,连通图只有唯一一个极大连通子图,就是它本身。

连通分量:非连通图有多个极大连通子图,非连通图的极大连通子图叫做连通分量,每个分量都是一个连通图。

图1

所以图1的极大连通子图是它本身 {'a', 'b', 'c', 'd', 'e', 'f', 'g'}。

图2

图2的连通分量为 {'a', 'b', 'd', 'e'}和{'c', 'f', 'g'}。

  • 2
    点赞
  • 0
    评论
  • 6
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值