第十二届省赛——8小平方

题目:

时间限制: 1.0s 内存限制: 512.0MB 本题总分:20 分

问题描述

小蓝发现,对于一个正整数 n 和一个小于 n 的正整数 v,将 v 平方后对 n 取余可能小于 n 的一半,也可能大于等于 n 的一半。

请问,在 1 到 n − 1 中,有多少个数平方后除以 n 的余数小于 n 的一半。

例如,当 n = 4 时,1 , 2 , 3 的平方除以 4 的余数都小于 4 的一半。

又如,当 n = 5 时,1 , 4 的平方除以 5 的余数都是 1 ,小于 5 的一半。而 2 , 3 的平方除以 5 的余数都是 4 ,大于等于 5 的一半。

输入格式

输入一行包含一个整数 n 。

输出格式

输出一个整数,表示满足条件的数的数量。

测试样例1

Input:

5

Output:

2

评测用例规模与约定

对于所有评测用例,1 ≤ n ≤ 10000 。

分析:

给定一个数字N,要我们求小于这个数字所有的整数数字符合不符合这个规律(将 v 平方后对 n 取余可能小于 n 的一半,也可能大于等于 n 的一半。)也就是求出这些数字中计算后有多少数字大于等于n的一半的数量,基础暴力就好了

步骤:

package 第十二届省赛第二套;

import java.util.Scanner;

public class 小平方 {

    public static void main(String[] args) {
        int count=0;
        Scanner sc = new Scanner(System.in);
        int n = sc.nextInt();
        for (int i = 1; i < n; i++) {
            if (i*i%n>n/2) {
                count++;
            }
        }
        System.out.println(count);
        
        
    }

}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

W少年没有乌托邦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值