计算机视觉 | 面试题:34、双线性插值

本文深入探讨了双线性插值在计算机视觉中的应用,包括其性质、单线性插值原理、双线性插值原理,并详细解释了图像坐标的前向映射和反向映射。内容涵盖图像放大时细节退化的现象,以及如何通过坐标调整实现几何中心对齐。同时,文章提到了优化方法和代码实现,是理解双线性插值的重要参考资料。
摘要由CSDN通过智能技术生成

双线性插值(Bilinear Interpolation)性质

  • 当对相邻四个像素点采用双线性插值时,所得表面在邻域处是吻合的,但斜率不吻合。并且双线性灰度插值的平滑作用可能使得图像的细节产生退化,这种现象在进行图像放大时尤其明显。

单线性插值原理

注:单线性插值是我自己取的名字,为了便于说明

为了方便说明,先以一条直线的插值为例,说明直线一维的线性插值,再说明二维的。

如图,我们已经知道在x=x0处和x=x1处的y值分别为y0和y1,现在要插值得到x=x处的y值是多少。线性插值的原理就是在已知的两点之间作一条线段,用来估计两点之间的任一未知点的y值。

根据线段(x0,y0)->(x,y)的斜率与线段(x0,y0)->(x1,y1)相等,有

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mrrunsen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值