R语言缺失值探索的强大R包:naniar

本文介绍了R语言中的naniar包,用于缺失值的探索和处理。通过使用该包,可以方便地查看数据的缺失情况、探索缺失值的关系、可视化缺失值分布,并进行缺失值插补。文章详细展示了naniar包的功能,包括数据的影子矩阵、缺失值的汇总统计以及模型化缺失值等,帮助读者深入理解数据中的缺失值问题。
摘要由CSDN通过智能技术生成

简介

缺失值在数据中无处不在,需要在分析的初始阶段仔细探索和处理。在本次示例中,会详细介绍naniar包探索缺失值的方法和理念,它和ggplot2tidy系列使用方法非常相似,上手并不困难。

有时,解释缺失值出现的原因可能很简单,比如,可能是由于记录不全,各种意外等,但实现这一解释的过程可能并不简单,而且可能需要比开发探索性数据分析和模型所需的更多时间。

本次学习主要探讨3个问题:

  1. 开始探索缺失值

  2. 探索缺失值的机制

  3. 模型化缺失值

如何开始探索缺失值

当你面对新的数据时,可能首先会使用各种汇总函数查看数据的基本情况,比如:

  • summary()

  • str()

  • skimr::skim

  • dplyr::glimpse()

  • ...

但是当数据有缺失值时,就会影响接下来的分析。所以首先还要查看数据的缺失情况。

R包visdat可以展示缺失值数据

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mrrunsen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值