R语言画森林图展示Logistic回归分析的结果

本文介绍了如何用R语言进行Logistic回归分析,并利用forestplot包生成森林图来展示分析结果,包括系数、95%置信区间和P值。在数据准备过程中,可能需要手动添加信息,读者被邀请分享简化步骤的方法。

第一步是准备数据

森林图展示的数据通常是Logistic回归分析的系数和95%置信区间以及显著性检验的P值,那么如何获得这些结果呢?

logistic回归分析的代码

data(Affairs,package = "AER")
df<-Affairs
df$ynaffairs<-ifelse(df$affairs>0,1,0)
df$ynaffairs<-factor(df$ynaffairs,
                     levels = c(0,1),
                     labels = c("No","Yes"))
fit.full<-glm(ynaffairs~gender+age+yearsmarried+
                children+religiousness+education+occupation+rating,
&
使用R语言绘制Logistic回归模型的森林是一种有效展示回归分析结果的方法,尤其是对于展示变量的影响程度和显著性具有重要意义。以下是绘制森林的详细步骤和方法: ### 数据准备与Logistic回归模型构建 首先,需要准备数据并构建Logistic回归模型。以`AER`包中的`Affairs`数据集为例,展示如何进行数据预处理和模型构建: ```r # 加载必要的包和数据 library(AER) # 加载数据 data(Affairs) df <- Affairs # 创建二分类变量ynaffairs df$ynaffairs <- ifelse(df$affairs > 0, 1, 0) df$ynaffairs <- factor(df$ynaffairs, levels = c(0, 1), labels = c("No", "Yes")) # 构建Logistic回归模型 fit.full <- glm(ynaffairs ~ gender + age + yearsmarried + children + religiousness + education + occupation + rating, data = df, family = binomial()) ``` ### 提取模型结果 接下来,提取模型结果以便后续绘制森林: ```r # 提取模型结果 fit.result <- summary(fit.full) # 提取系数 df1 <- fit.result$coefficients # 计算置信区间 df2 <- confint(fit.full) # 合并系数和置信区间 df3 <- cbind(df1, df2) # 数据整理 df4 <- data.frame(df3[-1, c(1, 4, 5, 6)]) df4$Var <- rownames(df4) colnames(df4) <- c("OR", "Pvalue", "OR_1", "OR_2", "Var") df5 <- df4[, c(5, 1, 2, 3, 4)] df5$OR_mean <- df5$OR df5$OR <- paste0(round(df5$OR, 2), "(", round(df5$OR_1, 2), "~", round(df5$OR_2, 2), ")") df5$Pvalue <- round(df5$Pvalue, 3) # 保存结果 write.csv(df5, file = "forestplot_example.csv", quote = FALSE, row.names = FALSE) ``` ### 绘制森林 使用`forestplot`包绘制森林: ```r library(forestplot) # 读取数据 rs_forest <- read.csv('forestplot_example.csv', header = FALSE) # 绘制森林 forestplot(labeltext = as.matrix(rs_forest[, 1:3]), mean = rs_forest$V4, lower = rs_forest$V5, upper = rs_forest$V6, is.summary = c(TRUE, TRUE, TRUE, FALSE, FALSE, TRUE, FALSE, FALSE, TRUE, FALSE, FALSE), zero = 1, boxsize = 0.4, lineheight = unit(10, 'mm'), colgap = unit(3, 'mm'), lwd.zero = 2, lwd.ci = 1.5, col = fpColors(box = '#458B00', summary = "#8B008B", lines = 'black', zero = '#7AC5CD'), xlab = "The estimates", graph.pos = 3) ``` ### 相关问题 1. 如何解释Logistic回归中的OR值? 2. `forestplot`包中的参数`is.summary`的作用是什么? 3. 如何调整森林形颜色和样式? 4. 在进行亚组分析时,如何处理不同亚组的数据? 5. 如何在R中导出森林片文件? 以上步骤展示了如何使用R语言进行Logistic回归分析并绘制森林。每一步都至关重要,确保最终能够生成清晰且具有信息量的表[^3]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mrrunsen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值