使用R包skimr汇总统计量的优美展示

本文介绍了R包skimr如何提供更丰富和美观的数据汇总统计展示。skimr不仅提供了比summary()更多的统计量,还能处理更多数据类型,并与knitr和pillar包结合,创建出更出色的输出效果。核心函数skim()能按变量类型展示统计量,其结果可进一步处理和分析,如比较变量均值或按原数据集变量分组查看汇总情况。
摘要由CSDN通过智能技术生成

数据分析工作的第一步往往是要通过一些描述性的统计,获得对所分析的数据集必要的了解。对于这个任务,在R中有两个常常用到的传统函数,一个是str(),用于展示对象的内部结构,给出数据集中变量的概览;另一个是summary(),给出一些汇总统计量:

library(tidyverse)
str(diamonds)
summary(diamonds)
###结果略

本文要介绍的R包skimr,可以提供变量汇总统计量的更丰富和优美的展示方式。

skimr包的优点:

提供了比summary()更多的统计量,还允许用户添加新的统计量

可以处理更多的数据类型,并按照数据类型报告结果

可以使用knitr进行表格的渲染,且支持基于pillar包的spark_bar和spark_line࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mrrunsen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值