R 语言 二分法与 牛顿迭代法计算中方程的根

本文探讨了使用R语言和牛顿-拉弗森方法来计算方程的根。牛顿迭代法是一种高效但可能局部收敛的求根算法,而二分法则提供了一种更稳健的选择。特别是,文章通过实例展示了如何解决方程ex + cos(x) + x = 0的根。
摘要由CSDN通过智能技术生成

Newton-Raphson方法是一种基于根的初始值猜测而来的迭代方法,此方法使用的函数为原函数以及原函数的导数,如果成功,它通常会快速的收敛,但是它也有可能像其他寻根方法一样失败,这是需要注意的一点。(因为牛顿方法并不总是趋同,其收敛理论作用于局部收敛)

计算以下方程的根

e x + c o s x + x = 0 e^x + cosx + x = 0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mrrunsen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值