在现代城市中,自行车共享系统已成为一种方便、环保的交通解决方案,为人们提供了灵活的出行方式。随着城市人口的增长和可持续交通模式的重要性日益凸显,预测自行车共享需求变得愈发重要。
本文将探讨一种基于数据科学的方法,旨在预测自行车共享系统的需求。我们将使用已收集的自行车共享数据集,通过分析不同的变量和因素,构建预测模型。这些模型能够根据时间、天气、假期等多个因素,预测未来的自行车租赁需求。
为了实现这一目标,我们将使用Python编程语言,并借助一系列必要的库,如Pandas、NumPy、Seaborn和Matplotlib,来处理和可视化数据。我们将采用多个回归模型,包括线性回归、决策树回归、随机森林回归以及XGBoost回归,来构建不同的预测模型。
## Import Necessary Libraries
import pandas as pd
import numpy as np
import seaborn