1.题目
给定一个按照升序排列的长度为n的整数数组,以及 q 个查询。
对于每个查询,返回一个元素k的起始位置和终止位置(位置从0开始计数)。
如果数组中不存在该元素,则返回“-1 -1”。
输入格式
第一行包含整数n和q,表示数组长度和询问个数。
第二行包含n个整数(均在1~10000范围内),表示完整数组。
接下来q行,每行包含一个整数k,表示一个询问元素。
输出格式
共q行,每行包含两个整数,表示所求元素的起始位置和终止位置。
如果数组中不存在该元素,则返回“-1 -1”。
数据范围
1≤n≤100000
1≤q≤10000
1≤k≤10000
输入样例:
6 3
1 2 2 3 3 4
3
4
5
输出样例:
3 4
5 5
-1 -1
2.解题
二分法:
整数二分:有单调性一定可以二分,但可以二分的不一定具有单调性
寻找边界
(1)
mid=(l + r + 1)/2
if(check(mid) == true) [mid,r],l = mid
if(check(mid) == false) [l,mid - 1],r = mid - 1
(2)
mid = (l + r) / 2
if(check(mid) == true) [l,mid],r = mid
if(check(mid) == false) [mid + 1,r],l = mid + 1
方法一:
c++:
#include <iostream>
using namespace std;
int main()
{
int n = 5, m = 3;
int q[] = {1, 2, 2, 3, 3, 4};
int x = 0;
while (m--)
{
cin >> x;
// 查找左边界
int l = 0, r = n - 1;
while (l < r)
{
int mid = (l + r) / 2;
if (q[mid] >= x)
r = mid;
else
l = mid + 1;
}
if (q[l] != x)
cout << "-1 -1" << endl;
else
{
cout << l << " ";
// 查找右边界
int l = 0, r = n - 1;
while (l < r)
{
int mid = (l + r + 1) / 2;
if (q[mid] <= x)
l = mid;
else
r = mid - 1;
}
cout << l << endl;
}
}
return 0;
}
java:
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
public class rangeOfNums {
public static void main(String[] args) throws IOException {
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
String[] string = in.readLine().split(" ");
int n = Integer.parseInt(string[0]), q = Integer.parseInt(string[1]);
int[] arr = new int[n];
String[] str = in.readLine().split(" ");
for (int i = 0; i < n; i++)
arr[i] = Integer.parseInt(str[i]);
for (int i = 0; i < q; i++) {
int k = Integer.parseInt(in.readLine());
int l = 0, r = n - 1;
// 查找左边界
while (l < r) {
int mid = (l + r) / 2;
if (arr[mid] >= k) {
r = mid;
} else {
l = mid + 1;
}
}
if (arr[l] != k)
System.out.print("-1 -1\n");
else {
System.out.print(l);
l = 0;
r = n - 1;
// 查找右边界
while (l < r) {
int mid = (l + r + 1) / 2;
if (arr[mid] <= k) {
l = mid;
} else {
r = mid - 1;
}
}
System.out.print(" " + l + "\n");
}
}
}
}
注意:同样的方法,在ACWing中,使用BufferedReader可以通过,但用Scanner超出时间限制
方法二:
利用二分法找到目标值,然后再循环查找目标值左边和右边是否有跟目标值一样的值,从而确定左右边界。
超出时间限制
java:
import java.util.Scanner;
public class Main{
public static int[] find(int arr[], int n, int k){
int i = 0, j = n, mid = (i + j) / 2;;
int[] res = {-1, -1};
while(i < j){
if(arr[mid] > k){
j = mid - 1;
}else if(arr[mid] < k){
i = mid + 1;
}else{
break;
}
mid = (i + j) / 2;
}
i = mid;
j = mid;
while(i >= 0 && arr[i] == k){
i--;
res[0] = i + 1;
}
while(j <= n && arr[j] == k){
j++;
res[1] = j - 1;
}
return res;
}
public static void main(String[] args){
Scanner scan = new Scanner(System.in);
String s1 = scan.nextLine();
int n = Integer.parseInt(s1.split(" ")[0]);
int q = Integer.parseInt(s1.split(" ")[1]);
int[] arr = new int[n];
String[] s_arr = scan.nextLine().split(" ");
for(int i = 0; i < n; i++){
arr[i] = Integer.parseInt(s_arr[i]);
}
int[] res = new int[2];
int k = 0;
for(int i = 0; i < q; i++){
k = Integer.parseInt(scan.nextLine());
res = find(arr, n - 1, k);
System.out.print(res[0] + " " + res[1] + "\n");
}
}
}
3.相关知识
Java中BufferedReader和scanner的对比
(1)BufferedReader
1.BufferedReader对象只将回车看作输入结束,得到的字符串;
2.BufferedReader是字符输入流中读取文本,缓冲各个字符,从而提供字符、数组和行的高效读取!速度要比Scanner快!而且也可以设置缓冲区的大小,或者可使用默认的大小。大多数情况下,默认值就足够大了。
3.BufferedReader类位于java.io包中,所以要使用这个类,就要引入java.io这个包
import java.io.BufferedReader. readLine()方法会返回用户在按下Enter键之前的所有字符输入,不包括最后按下的Enter返回字符.使用BufferedReader对象的readLine()方法必须处理java.io.IOException异常(Exception).使用BufferedReader来取得输入,理解起来要复杂得多.但是使用这个方法是固定的,每次使用前先如法炮制就可以了
(2)Scanner
1.Scanner对象把回车,空格,tab键都看作输入结束,直接用sc.next()得到的是字符串形式
2.在创建Scanner类的对象时,需要用System.in作为它的参数,也可以将Scanner看作是System.in对象的支持者,System.in取得用户输入的内容后,交给Scanner来作一些处理.
Scanner类中提供了多个方法:
next():取得一个字符串;
nextInt():将取得的字符串转换成int类型的整数;
nextFloat():将取得的字符串转换成float型;
nextBoolean():将取得的字符串转换成boolean型;
3.Scanner类位于java.util包中,要加上import java.util.Scanner; 用Scanner获得用户的输入非常的方便,但是Scanner取得输入的依据是空格符,包括空格键,Tab键和Enter键.当按下这其中的任一键时,Scanner就会返回下一个输入.当你输入的内容中间包括空格时,显然,使用Scanner就不能完整的获得你输入的字符串.这时候我们可以考虑使用BufferedReader类取得输入.其实在Java SE 1.4及以前的版本中,尚没有提供Scanner方法,我们获得输入时也是使用BufferReader的.