数组与矩阵 - 对角元素相等的矩阵

1.题目

LeetCode: 766. 托普利茨矩阵

【easy】

给你一个 m x n 的矩阵 matrix 。如果这个矩阵是托普利茨矩阵,返回 true ;否则,返回 false 。

如果矩阵上每一条由左上到右下的对角线上的元素都相同,那么这个矩阵是 托普利茨矩阵 。

示例 1:

输入:matrix = [[1,2,3,4],[5,1,2,3],[9,5,1,2]]

输出:true

解释:
在上述矩阵中, 其对角线为:
“[9]”, “[5, 5]”, “[1, 1, 1]”, “[2, 2, 2]”, “[3, 3]”, “[4]”。
各条对角线上的所有元素均相同, 因此答案是 True 。

示例 2:

输入:matrix = [[1,2],[2,2]]

输出:false

解释:
对角线 “[1, 2]” 上的元素不同。

提示:

  • m == matrix.length
  • n == matrix[i].length
  • 1 <= m, n <= 20
  • 0 <= matrix[i][j] <= 99

进阶:

如果矩阵存储在磁盘上,并且内存有限,以至于一次最多只能将矩阵的一行加载到内存中,该怎么办?
如果矩阵太大,以至于一次只能将不完整的一行加载到内存中,该怎么办?

2.解题

方法一:暴力法

java:

class Solution {
    public boolean isToeplitzMatrix(int[][] matrix) {
        int r = matrix.length, c = matrix[0].length;
        for (int i = 0; i < r - 1; i++) {
            for (int j = 0; j < c - 1; j++) {
                if (matrix[i][j] != matrix[i + 1][j + 1]) return false;
            }
        }
        return true;
    }
}

时间复杂度: O ( n 2 ) O(n^2) O(n2)

空间复杂度:O(1)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值