1.题目
LeetCode: 766. 托普利茨矩阵
【easy】
给你一个 m x n 的矩阵 matrix 。如果这个矩阵是托普利茨矩阵,返回 true ;否则,返回 false 。
如果矩阵上每一条由左上到右下的对角线上的元素都相同,那么这个矩阵是 托普利茨矩阵 。
示例 1:
输入:matrix = [[1,2,3,4],[5,1,2,3],[9,5,1,2]]
输出:true
解释:
在上述矩阵中, 其对角线为:
“[9]”, “[5, 5]”, “[1, 1, 1]”, “[2, 2, 2]”, “[3, 3]”, “[4]”。
各条对角线上的所有元素均相同, 因此答案是 True 。
示例 2:
输入:matrix = [[1,2],[2,2]]
输出:false
解释:
对角线 “[1, 2]” 上的元素不同。
提示:
- m == matrix.length
- n == matrix[i].length
- 1 <= m, n <= 20
- 0 <= matrix[i][j] <= 99
进阶:
如果矩阵存储在磁盘上,并且内存有限,以至于一次最多只能将矩阵的一行加载到内存中,该怎么办?
如果矩阵太大,以至于一次只能将不完整的一行加载到内存中,该怎么办?
2.解题
方法一:暴力法
java:
class Solution {
public boolean isToeplitzMatrix(int[][] matrix) {
int r = matrix.length, c = matrix[0].length;
for (int i = 0; i < r - 1; i++) {
for (int j = 0; j < c - 1; j++) {
if (matrix[i][j] != matrix[i + 1][j + 1]) return false;
}
}
return true;
}
}
时间复杂度: O ( n 2 ) O(n^2) O(n2)
空间复杂度:O(1)