一、图的基本组成
V:点(特征)
E:边
U:图(全局特征)
二、用途
整合特征(embedding),做重构

三、邻接矩阵
以图像为例,每个像素点周围都有邻居,用邻接矩阵表示哪些点之间有关系,邻接矩阵A是对称的,也可以不对称
文本也可以做邻接矩阵:

实际是2xN, (source , target),要不然维护一个NxN太多了
四、使用场景
输入的格式不需要固定,是随意的,没有CV NLP的resize等固定大小之说。比如说人的社交网络,随时会变
点边图
五、每个点特征更新(聚合 更新)
更新时肯定要考虑他们的邻居

GCN图卷积
一、

优势:可以做半监督学习 
二、基本思想
计算特征,之后传入神经网络 

图中基本组成:
邻接矩阵 
特征计算方法:


使用度矩阵来做个平均



你的度和我的度都要考虑进来 
基本公式


本文介绍了图的基本构成,包括点的特征和边的关系,以及邻接矩阵的表示方法。重点讲解了图卷积神经网络(GCN)的应用,特别是在半监督学习中的优势,以及特征计算和聚合更新的原理。讨论了图中度矩阵在特征计算中的作用。
2801

被折叠的 条评论
为什么被折叠?



