GNN/GCN自己学习

本文介绍了图的基本构成,包括点的特征和边的关系,以及邻接矩阵的表示方法。重点讲解了图卷积神经网络(GCN)的应用,特别是在半监督学习中的优势,以及特征计算和聚合更新的原理。讨论了图中度矩阵在特征计算中的作用。
摘要由CSDN通过智能技术生成

一、图的基本组成
V:点(特征)
E:边

U:图(全局特征)

二、用途

整合特征(embedding),做重构

三、邻接矩阵

以图像为例,每个像素点周围都有邻居,用邻接矩阵表示哪些点之间有关系,邻接矩阵A是对称的,也可以不对称

文本也可以做邻接矩阵:

实际是2xN, (source , target),要不然维护一个NxN太多了 

四、使用场景

输入的格式不需要固定,是随意的,没有CV NLP的resize等固定大小之说。比如说人的社交网络,随时会变

点边图

五、每个点特征更新(聚合 更新)

更新时肯定要考虑他们的邻居

 

GCN图卷积

一、

优势:可以做半监督学习 

二、基本思想

计算特征,之后传入神经网络 

 

图中基本组成:

 邻接矩阵  

特征计算方法:

 

 

 使用度矩阵来做个平均

 

 

你的度和我的度都要考虑进来 

基本公式

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>