协同过滤浅谈

本文介绍了协同过滤这种经典的推荐系统算法,包括曼哈顿距离、欧式距离、皮尔逊系数和余弦定理等相似度计算方法,以及K邻域、SlopOne等预测策略。协同过滤分为UserCF和ItemCF,分别应用于新闻推荐和商品推荐。同时,文章讨论了显式与隐式评级在实际应用中遇到的问题。
摘要由CSDN通过智能技术生成

我们来谈谈最经典的推荐算法协同过滤吧,下面是思维导图拙作一副



协同过滤常常被用于分辨某位特定顾客可能感兴趣的东西,这些结论来自于对其他相似顾客对哪些产品感兴趣的分析。协同过滤以其出色的速度和健壮性,在全球互联网领域炙手可热。

与传统文本过滤相比,协同过滤有下列优点:
(1)能够过滤难以进行机器自动基于内容分析的信息。如艺术品、音乐;
(2)能够基于一些复杂的,难以表达的概念(信息质量、品位)进行过滤;
(3)推荐的新颖性。
正因为如此,协同过滤在商业应用上也取得了不错的成绩。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值