【模型检索】Sketch-Based Shape Retrieval

本文介绍了一个使用草图特征进行三维物体检索的系统。通过bag-of-features方法,结合Gabor滤波器提取特征,构建视觉词汇表,然后优化参数进行检索。在用户提交查询草图后,系统对其进行局部描述符提取,量化为视觉单词直方图,实现有效的形状匹配。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

概述

一个以草图特征线为输入的三维物体检索系统
分为在线检索和非在线检索两种
用户绘制查询草图并将其提交到检索管道。我们在查询草图上执行以下步骤:首先提取局部描述符,对视觉词汇进行量化,最后将草图表示为(稀疏)视觉单词出现的直方图。

方法

1.在计算机生成的物体线条图上使用bag-of-features方法

  • 将每个视图图像编码为一个由许多小的局部图像块组成的包,并将其转换为适当的特征空间。由于局部特征不携带任何空间信息,这种表示通常被称为“特征包”。
    在这里插入图片描述
    g是一种特征提取管道,将不同方向的滤波器和这个草图卷积,对应的生成响应图b),根据每一小片的局部反应图c)生成局部特征向量d).特征向量中的每个维度代表一个可视词

2.视觉词汇表

从所有模型和视图中提取了100万个局部特征,并对这些特征使用K-means聚类生成一个视觉词汇表

3.构建一个以Gabor滤波器的目标特征变换

  • Gabor滤波器:仅响应于给定频率和方向的滤波器
  • 定义了一个具有k个不同方向的Gabor函数gi滤波器组
  • 在给定图像空间中的一个关键点坐标的情况下&#
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值