概述
一个以草图特征线为输入的三维物体检索系统
用户绘制查询草图并将其提交到检索管道。我们在查询草图上执行以下步骤:首先提取局部描述符,对视觉词汇进行量化,最后将草图表示为(稀疏)视觉单词出现的直方图。
方法
1.在计算机生成的物体线条图上使用bag-of-features方法
- 将每个视图图像编码为一个由许多小的局部图像块组成的包,并将其转换为适当的特征空间。由于局部特征不携带任何空间信息,这种表示通常被称为“特征包”。
g是一种特征提取管道,将不同方向的滤波器和这个草图卷积,对应的生成响应图b),根据每一小片的局部反应图c)生成局部特征向量d).特征向量中的每个维度代表一个可视词。
2.视觉词汇表
从所有模型和视图中提取了100万个局部特征,并对这些特征使用K-means聚类生成一个视觉词汇表
3.构建一个以Gabor滤波器的目标特征变换
- Gabor滤波器:仅响应于给定频率和方向的滤波器
- 定义了一个具有k个不同方向的Gabor函数gi滤波器组
- 在给定图像空间中的一个关键点坐标的情况下&#