自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(29)
  • 收藏
  • 关注

原创 服务器上安装jupyter,本地浏览器访问

背景:在实验室配置较高的服务器上跑实验,但是只能通过xshell访问,不能输出图形。现在想在服务器上安装jupyter,然后在本机用浏览器访问就可以看到python输出的图形了。环境:anaconda虚拟环境 python 3.5.4步骤1 :$ pip install jupyter 安装jupyter步骤2 :$ jupyter notebook --generate-co...

2019-11-06 15:21:38 3218

原创 【零样本学习】From Zero-shot to Conventional Supervised Classification:Unseen Visual Data Synthesis

Abstract目标识别通常依赖于从大量真实图像中提取特征。但是,在现实场景中,为不断增长的新的类别收集足够的图像是不可能的。所以,提出新的Zero-shot learning (ZSL)框架,可以在没有真实图像的情况下,生成unseen class的视觉特征。采用所提出的Unseen Visual Data Synthesis (UVDS)算法,在训练阶段可以利用语义向量来生成视觉特征。从而,...

2019-10-30 15:26:40 678

原创 【零样本学习】Generalized Zero-Shot Learning via Synthesized Examples

Abstract提出生成模型来解决generalized zero-shot learning问题。在条件变分自编码器的基础上,可以生成seen/unseen class的特征,然后可以用来训练分类器。我们的编码-解码结构的关键点是反馈驱动机制,其中判别器(多元回归器)学习将生成的特征映射到相应的类别属性向量,从而得到更好的生成器。我们的模型能够生成unseen class的特征,并且用来训练分...

2019-10-30 15:26:24 2583

原创 【零样本学习】Zero-Shot Learning via Class-Conditioned Deep Generative Models

MotivationsZSL问题为了能够泛化到unseen class,通常做了类别辅助信息可用性的假设(辅助信息可以帮助从seen class迁移知识到unseen class)。辅助信息可以是类别属性、词向量等或者是unseen class和每个seen class的相似度。现有的大多数ZSL方法假设每个类别可以用语义空间中的一个固定点表示,而一个点不足以解释类内方差。而生成模型有很多优势...

2019-10-30 15:26:00 1135 1

原创 【零样本学习】A Generative Model For Zero Shot Learning Using Conditional Variational Autoencoders

MotivationZero shot learning假设虽然没有不能得到unseen class的图像,但是可以获得unseen class的语义信息(属性信息或者文本描述等),所以ZSL的研究有助于理解语言概念如何很好地转化为视觉信息。倘若某个类别能够被语义向量准确地表示,那么ZSL问题就可以看作寻找语义向量和图像视觉特征之间的关系。现有的大多数ZSL方法就是学习图像视觉空间到语义空间的...

2019-10-30 15:25:38 912

原创 【零样本学习】Zero-Shot Visual Recognition using Semantics-Preserving Adversarial Embedding Networks

Abstract基于visual-semantic embedding的ZSL方法存在信息损失(semantic loss)的问题,在训练过程中,如果某些语义信息对分类的区分性不大,则会被丢弃,但是这些信息往往对识别unseen class很重要。为了避免semantic loss,我们提出 Semantics-Preserving Adversarial Embedding Network (...

2019-10-30 15:24:49 941

原创 【零样本学习】A Generative Adversarial Approach for Zero-Shot Learning from Noisy Texts

Abstract大多数现有的ZSL方法是visual semantic embedding的思路。本文利用GAN从文本描述中想象unseen class,从而识别unseen class。具体来说,我们提出了一个简单而有效的生成模型,该模型将unseen class(例如wikipedia文章)的文本描述(通常有噪声)作为输入,为其生成视觉特性。ZSL问题转化为传统分类问题。此外,为了保持生成特...

2019-10-30 15:24:15 1568 1

原创 【零样本学习】Multi-modal Cycle-consistent Generalized Zero-Shot Learning

Motivations现有的GZSL方法学习视觉空间到语义空间的映射(假设视觉空间和语义空间中的类别分布相似),容易偏向于seen class,导致GZSL的准确率低。近年来,生成式方法通过生成unseen class的特征,再学习分类器,提升了GZSL性能。但是它不能保证生成的视觉特征能够反过来生成它对应的语义特征。这导致生成的视觉特征不能很好地表示它的语义特征。所以,提出使用 cycle-c...

2019-10-30 15:23:33 1164

原创 Git使用

配置Git首先在本地创建ssh key;$ ssh-keygen -t rsa -C “your_email@youremail.com”后面的your_email@youremail.com改为你在github上注册的邮箱,之后会要求确认路径和输入密码,我们这使用默认的一路回车就行。成功的话会在~/下生成.ssh文件夹,进去,打开id_rsa.pub,复制里面的key。回到github上...

2019-10-28 10:29:30 121

原创 【零样本学习】Rethinking Knowledge Graph Propagation for Zero-Shot Learning

Abstract近年来,GCN在ZSL问题上取得了不错的效果,它关联在图结构上相关概念,使得能够泛化到unseen class。然而,由于多层GCN结构需要将知识传播到图中较远的节点(传递并吸收较远节点的知识),在每一层都要执行Laplacian平滑,会稀释知识导致性能降低。为了利用图结构的优势,同时防止较远节点导致的知识稀释问题,我们提出Dense Graph Propagation (DGP...

2019-09-30 16:54:02 1772 1

原创 【零样本学习】Zero-shot Recognition via Semantic Embeddings and Knowledge Graphs

MotivationZSL问题的关键是从seen class迁移知识到unseen class中。一种方法是利用隐式的知识表示(语义向量)来迁移知识。这种方法从文本数据中学习类别的语义向量表示,然后学习语义空间到视觉空间的映射关系,模型受限于语义模型和映射模型的泛化能力。而且很难从结构化信息中学习语义向量。另一种方法是基于显式的知识库或知识图谱。这种方法显示地将知识表示成类别之间的关系(可以利用...

2019-09-30 15:13:29 3848 7

原创 【零样本学习】Feature Generating Networks for Zero-Shot Learning

Abstract由于seen class和unseen class训练数据的极度不平衡,现有的ZSL方法在GZSL任务上性能很差。我们提出基于GAN框架,利用语义信息来生成CNN特征。我们的方法利用Wasserstein GAN和分类损失,生成判别性强的CNN特征,来训练分类器(softmax classifiers or multimodal embedding method)。Contri...

2019-09-23 21:05:15 2289

原创 【零样本学习】Generating Visual Representations for Zero-Shot Classification

Abstract大多数现有方法依赖于学习共同的embedding空间,使得unseen class的视觉特征和语义描述进行比较。但是此方法存在局限:1)不能利用判别分类器;2)Generalized Zero-Shot Learning问题不能有效解决。所以,本文同时解决ZSL和GZSL,1)利用seen class学习条件生成器(conditional generator);2)为unseen...

2019-09-23 15:57:32 842

原创 【零样本草图检索】Generalising Fine-Grained Sketch-Based Image Retrieval

Abstract虽然细粒度草图检索获得令人满意的结果,但需要实例级别的sketch/image pair标注信息,而且学习到的特征空间是domain-specific的,不能很好的推广到unseen classes。本文将 generalisation for FG-SBIR 看作 domain generalisation 问题。提出用无监督学习的方法来建模通用的sketch视觉特性字典,然后...

2019-09-08 22:30:01 2397 2

原创 【零样本草图检索】Semantic-Aware Knowledge Preservation for Zero-Shot Sketch-Based Image Retrieval

Motivation1、SBIR任务的关键问题是为sketch/image两个不同的模态寻找一个共享的embedding空间,能够将每张sketch/image映射成这个特征空间中的高维向量。而Zero-Shot场景的目标是测试模型迁移知识到未知类别的能力。实验证明,现有的SBIR方法在Zero-Shot场景下的性能很不好,因为模型在source domain上过拟合,同时不能识别unseen ...

2019-09-08 16:55:39 1491

原创 【零样本哈希】Transductive Zero-Shot Hashing via Coarse-to-Fine Similarity Mining

目录MotivationContributionsMethodsExperimentsConclusionMotivation1、Yang et al提出的zero-shot hashing方法是通过在已知类别和未知类别之间构建一个中间语义向量空间(类别标签的词向量空间)来迁移监督知识。但是由于已知类别和未知类别的数据分布不同,直接将从已知类别学习到的哈希函数用于未知类别,会引起偏差(pro...

2019-09-08 13:04:02 487

原创 服务器上用anaconda虚拟环境安装gpu版本tensorflow

Note:安装GPU版本的tensorflow要求cuda版本和tensorflow版本对应,而cuda运行要求cuda版本与显卡驱动版本对应基础知识显卡驱动:需要有驱动才能用显卡cuda: 是NVIDIA 推出的通用gpu 计算架构。也就是说CUDA只能在NVIDIA的GPU上运行,而且只有当要解决的计算问题是可以大量并行计算的时候才能发挥CUDA的作用cuDnn: 是深度学习加速库。注...

2019-09-05 19:38:56 2896

原创 【零样本草图检索】Zero-Shot Sketch-Image Hashing

Motivations1、传统的SBIR可以视为简单任务,因为在参数学习过程中可以利用到所有类别的视觉信息,但是在实际场景中,训练集的类别并不能够保证涵盖查询图像和数据库中候选图像的所有类别。现有SBIR方法在zero-shot场景下往往效果很差,因为所学习到的检索模型对查询图像没有语义概念知识。2、zero-shot SBIR hashing是zero-shot learning的一个特例,...

2019-09-05 14:24:15 1607

原创 【零样本草图检索】Doodle to Search: Practical Zero-Shot Sketch-based Image Retrieval

Motivationssketch的数量和种类都很少,所以发展ZS-SBIR。而存在三个问题:sketch与image的domain gap;sketch的高度抽象;ZSL中从seen class到unseen class的语义迁移。需要合适的数据集能够包括上述挑战。Contributions1、发布新数据集QuickDraw-Extended。首先,数据集能模拟sketch与image之间...

2019-09-03 15:59:45 2071 1

原创 【零样本草图检索】Semantically Tied Paired Cycle Consistency for Zero-Shot Sketch-based Image Retrieval

Motivations1、zero-shot SBIR面临 significant domain gap, intra-class variability and limited knowledge about the unseen classes等问题2、先前的方法,[1]通过对齐的sketch-image pair 来学习sketch到image的映射,使用成对的监督信息是为了增强多模态数...

2019-09-02 15:07:35 1536

原创 【零样本草图检索】A Zero-Shot Framework for Sketch Based Image Retrieval

Abstract基于草图的图像检索(SBIR)是给定手绘草图,从自然图像数据库中检索图像的任务。现有的评价方法主要关注粗粒度的检索,即检索与草图属于同一个类别的图像,而不一定具有与草图相同的形状特征。而这导致现有方法只是简单地学习如何将草图与seen class联系起来,而无法推广到unseen class。因此,本文提出zero-shot SBIR,在unseen class上评价模型性能。并...

2019-09-01 18:39:06 1940

转载 Sketch Based Applications

版权声明:本文为CSDN博主「MokHoYin」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。原文链接:https://blog.csdn.net/qq_33000225/article/details/90720833 ...

2019-09-01 13:26:05 514

原创 实时查看GPU占用与杀死进程

实时查看GPU占用watch -n 1 nvidia-smi每隔1s显示占用情况(ctrl+c可退出)查看进程ps(ps -ef 可看详情)杀死进程kill -9 PID

2019-08-24 19:12:07 3142

原创 Linux服务器非root权限下安装Anaconda

1、下载对应版本的Anaconda (wget+路径)下载地址:https://repo.anaconda.com/archive/或者清华镜像:https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/2、安装anaconda:bash Anaconda3-5.0.1-Linux-x86_64.sh3、按enter浏览完协议以后,输...

2019-08-21 09:46:45 6180 1

原创 【零样本哈希】Zero-shot Hashing with orthogonal projection for image retrieval

目录MotivationContributionsMethodsExperimentsConclusionsMotivation1、传统的监督哈希方法通常要求查询数据和训练数据具有相同的分布,这意味着查询数据的类别应该出现在训练类别中。然而,随着网络数据的爆炸式增长,新概念的图像正在迅速出现,为新出现的语义类别标记足够的训练数据是昂贵的,而且当新概念出现时对哈希函数进行重新训练是不现实的。Ze...

2019-08-19 18:45:53 593

原创 【零样本哈希】Attribute-Guided Network for Cross-Modal Zero-Shot Hashing

目录MotivationsContributionsMethodsExperimentsMotivations1、zero-shot,标注新兴概念的时间和人工成本高,而且重新训练哈希模型也很耗时;2、现有的ZSH方法关注单模态图像检索(以图搜图),但现实生活中也有很多以文搜图的例子,所以研究跨模态zero-shot hashing。ContributionsCross-Modal Zer...

2019-08-19 11:22:26 948

原创 【零样本哈希】Attribute hashing for zero-shot image retrieval

Motivation1、大量新型概念出现,一方面人工标注成本高,另一方面重新训练哈希模型耗时2、ZSH没有解决语义鸿沟问题(计算机理解的底层视觉特征和人类理解的高层语义信息的不一致);ZSH倾向于在同质类别之间迁移监督知识(猫和狗都属于动物类),而忽视了异质类别之间的有用信息(鸟和飞机能够通过翅膀这个属性共享监督信息)3、Attribute learning被证明能够对视觉数据很好地语义建模...

2019-08-18 14:58:46 838

原创 【零样本哈希】SitNet: Discrete Similarity Transfer Network for Zero-shot Hashing

目录MotivationContributionsMethodsNetwork ArchitectureLoss FunctionOptimizationExperimentsConclusionMotivation1、传统的哈希方法对已知类别的性能很好(因为有正确的标签信息指导哈希学习),但是无法适用于新兴概念(从未见过的类别)。一方面,对新概念进行人工标注的成本高;另一方面,标注后再重新训...

2019-08-16 12:40:14 774

原创 【零样本哈希】ZSH:Zero-Shot Hashing via Transferring Supervised Knowledge

ABSTRACTKeywords: zero-shot hashing; discrete hashing; supervised knowledge transfer; semantic alignmentINTRODUCTION哈希是一种能够有效实现大规模多媒体数据检索的索引技术。为了实现更短的检索时间和更少的计算开销,哈希技术将高维数据映射成紧凑的二进制编码。通过哈希编码,可以降低数据...

2019-08-13 15:14:13 1202

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除