论文阅读笔记——A0: An Affordance-Aware Hierarchical Model for General Robotic Manipulation

A0 论文阅读笔记
现有的 VLA 因缺乏空间位置理解直接生成动作,导致擦拭白板、堆叠物体等复杂任务表现欠佳。而 SpatialVLA,Any-point Trajectory Modeling,RoboPoint,Track2Act 等基于点的方法侧重轨迹建模,General Flow,Im2Flow2Act 基于流的方法侧重稠密空间表征计算成本高,具身依赖性强 A 0 A_0 A0 提出以物体为中心的"具身无关可供性表征",仅预测待操作物体的接触点及轨迹。该设计使方法具备跨平台泛化能力,仅需少量标注数据微调即可实际部署。
在这里插入图片描述
Affordance 能在复杂环境中实现结构化动作选择,基于 Heatmap 的方法能定位但计算成本高;基于边界框和关键点的方法效率和精度都好。 A 0 A_0 A0 的 Affordance 区别于 RoboBrain 和 Robopoint 的是,他是一个接触点而不是接触区域

A 0 A_0 A0 其核心创新在于将任务分解为高层空间可操作性推理底层动作执行,通过跨平台的具身无关可操作性表示(Embodiment-Agnostic Affordance Representation)预测物体中心的接触点与轨迹,实现多机器人系统的泛化能力。

在这里插入图片描述
采用 DROID-2k、HOI4D-22k、ManiSkill-5k 按照 8:2 划分作为数据集
具身无关数据表示: R = R R ∪ R H ∪ R C = { ( I , L , C , T ) ∣ C = ( c 0 2 D ) , T = ( t 0 2 D , t 1 2 D , t 2 2 D , … … ) } \mathcal{R}=\mathcal{R}_R \cup \mathcal{R}_H \cup \mathcal{R}_C =\{(I,L,C,T)|C=(c_0^{2D}),T=(t_0^{2D},t_1^{2D},t_2^{2D},……)\} R=RRRHRC={(I,L,C,T)C=(c02D),T=(t02D,t12Dt22D……)} (以物体为中心的图像——当前帧,一组二维 waypoint——接触点、接触后的轨迹)

  • 视觉编码器:使用预训练的 SigLiP(400M) 提取图像特征,将 I t − 1 I_{t-1} It1​ 和 I t I_t It​ 分别编码为 token 序列。
  • 文本编码器:使用预训练的 Qwen2.5-7B 提取语言指令的 token。
  • 运动信息增强: 通过计算当前帧与前一帧 token 的差值 I m = I t i − I t − 1 i I^m=I_t^i-I_{t-1}^i Im=ItiIt1i,并与当前帧 token 拼接( o t = c o n c a t ( [ I t i , I m i ] , d i m = 1 ) o_t=concat([I_t^i,I_m^i],dim=1) ot=concat([Iti,Imi],dim=1)),增强模型对物体运动的感知。

模型以带噪声的轨迹点坐标和扩散步长为输入,通过帧间差分增强运动感知,结合位置编码和层级特征交互,最终通过 MLP 解码器输出去噪后的未来T步轨迹点。训练分为两阶段:预训练阶段聚焦单点定位(起始点),微调阶段扩展至多步轨迹预测,均采用MSE损失监督坐标生成,并通过ODE求解器加速推理。
预训练仅预测起始点 x t x_t xt L p ( θ ) = 1 n ∑ i = 1 n ( ( x t 0 ) i − ( f θ ( k , x t k , I t , ℓ ) ) i ) 2 . \mathscr{L}_p(\theta)=\frac{1}{n}\sum_{i=1}^n((x_t^0)_i-(f_\theta(k,x_t^k,I_t,\ell))_i)^2. Lp(θ)=n1i=1n((xt0)i(fθ(k,xtk,It,))i)2.
微调阶段适配具体机器人任务,预测完整轨迹:
L p ( θ ) = 1 n ∑ i = 1 n ( ( x t : t + T 0 ) i − ( f θ ( k , x t : t + T k , I t − 1 : t , ℓ ) ) i ) 2 . \mathscr{L}_p(\theta)=\frac{1}{n}\sum_{i=1}^n((x_{t:t+T}^0)_i-(f_\theta(k,x_{t:t+T}^k,I_{t-1:t},\ell))_i)^2. Lp(θ)=n1i=1n((xt:t+T0)i(fθ(k,xt:t+Tk,It1:t,))i)2.
ODE 求解器将传统扩散模型的离散去噪过程转化为连续动态系统,通过线性衰减+非线性修正生成轨迹。:
d x k d k : = f ( k ) x k + g 2 ( k ) 2 σ k ϵ θ ( x k , k ) , x k ∼ N ( 0 , σ ~ 2 I ) \frac{\mathrm{d}\mathbf{x}^k}{\mathrm{d}k}:=f(k)\mathbf{x}^k+\frac{g^2(k)}{2\sigma_k}\epsilon_\theta(\mathbf{x}^k,k),\mathbf{x}^k\sim\mathcal{N}(0,\tilde{\sigma}^2\boldsymbol{I}) dkdxk:=f(k)xk+2σkg2(k)ϵθ(xk,k),xkN(0,σ~2I)
由于模型输出的是 2D 图像坐标系下的归一化坐标 ( u , v ) ∈ [ 0 , 1 ] 2 (u,v)\in[0,1]^2 (u,v)[0,1]2,所以基于深度信息和相机内参,通过逆透视变换得到 3D 空间: X i = D ( x i ) K − 1 x i ~ , i = t + 1 , t + 2 , … … , t + T X_i=D(x_i)K^{-1}\tilde{x_i},\quad i=t+1,t+2,……,t+T Xi=D(xi)K1xi~,i=t+1,t+2,……,t+T

参考 MOKA 和 RAM 对于抓取姿态估计,使用 GraspNet 基于局部几何特征生成一组候选抓取姿态 G \mathcal{G} G,从候选集中选择与投影接触点 X t X_t Xt 最接近的抓取姿态 G ∗ G^* G
G ∗ = arg ⁡ m i n ∣ ∣ G − X t ∣ ∣ G^*=\arg min||G-X_t|| G=argmin∣∣GXt∣∣
由于 waypoint 在脱离接触点后的高度无法直接从单帧深度图获取,引入 VLM 辅助决策,通过 VLM 生成语义标签 at target levelabove targetbelow target,根据此采样具体数值,结合抓取点 G ∗ G^* G 和路径点 { X t + 1 , … … , X t + T } \{X_{t+1},……,X_{t+T}\} {Xt+1,……,Xt+T} ,通过运动规划器生成对应的 SE(3) 路径。

实验结果

在这里插入图片描述
在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值