机器学习介绍
1 人类探索人工智能的阶段
- 人工智能是早期人类探索的目标
- 人类设定好的天生本能
- 向着人工智能这个大目标不断迈进,我们发现了实现人工智能的手段机器学习
- 深度学习就是机器学习的其中一种方法
2 生物的本能
- 河狸会构筑水坝阻挡水流
- 河狸筑坝的能力是天生的
- 程序语言1(原视频改良):
while ‘听得见水流声’ : 河狸筑坝
- 程序语言2(原视频):
if '听得见水流声' : 河狸筑坝直到听不到水流声
- 程序语言1(原视频改良):
- 科学实验:
- 用扬声器播放水流声
- 把扬声器放在水泥墙里面,河狸会用泥巴和树枝来填充墙体
- 如果将扬声器放在平地,河狸会想办法用材料将其盖住
- 河狸筑坝的能力是天生的
3 人类设定好的天生本能
-
想要自己去构建一个聊天机器
-
首先需要人为去设定一些规则
- 比如:如果我们输入
turn off
,机器就会执行turn off the music
(关闭音乐) - 看上去很智能,但是存在的问题现象是:如果我们说
Please don't turn off the music
,机器也会关闭音乐
- 比如:如果我们输入
-
人为制定规则的缺陷
- 人类很难考虑到事件出现的所有可能性
- 机器的能力永远无法超越创造者(没办法自己
freestyle
)
- 机器的能力永远无法超越创造者(没办法自己
- 需要大量的人力去制定规则(对于小企业来说非常不友好)
- 人类很难考虑到事件出现的所有可能性
-
-
AI
- 漫画告诉我们:看似华丽外表对外界反应
对答如流
的机器,内部的算法确实徒有其表
,甚至可能只是最简单的if
嵌套。
- 真正
AI
的发展何去何从?- 让机器具有自主学习的能力(机器学习思想的诞生)
- 漫画告诉我们:看似华丽外表对外界反应
4 机器学习方向的简单定义
- 写一段机器学习的程序,让机器变得很聪明,从而具有学习能力
- 让机器学习去识别语句对话,例如:
Hi
、How are you
、Good bye
。 - 学习识别语句对话后,给机器新的声音,例如:
Hello
的语音片段。它会回答你这是Hello
- 让机器学习去识别语句对话,例如:
-
从人类提供的数据中,找出需要掌握的特定学习能力函数。
- 语音识别
- 影像识别
- 围棋大师
- 聊天机器人
-
找出学习能力函数的过程(监督学习)
-
所有学习能力函数对应的输入输出集合,被称作
Model
,其中蕴含了很多不同的输入输出。 -
给予机器训练集,告诉机器好的输入输出对应关系(学习能力函数)应该长什么样儿。
-
机器就可以决定
Model
中函数的好坏 -
但光知道好坏还不够,机器需要能够通过算法挑出最好函数(最好的学习能力),即找到最优算法。
-
掌握最好的函数后,机器要能够举一反三,即通过测试集中没有见过的输入得到对应正确的输出。
-
上述过程可以用小例子的阐明:比如一个小孩子的成长过程中会遇到各色各样的人,这些各色各样的人都可能会影响小孩子,这些人的人生就是一个
Model
,蕴含很多不同的输入输出。机器训练集,好比是我们家长提前假设好的预测,告诉孩子,从Model
中选出不同的人,一个人认真学习,努力工作,享受生活,那么他长大后会变得幸福快乐。另一个人荒废学业,潦草度日,那么他长大后会变得怨天尤人。家长会将前者的经历作为训练集中的一个例子来训练小孩子,后者的经历会被摒弃。从而让小孩子向着健康成长的旅途迈进,掌握前者的人生能力。家长还可能想办法找到最好的人生例子来教导孩子,也就好比机器需要通过算法找出最好的函数。小孩子掌握后,就能够在人生的旅途中通过观察不同的人来判断什么样的人应该被作为榜样追随,直到成为榜样。
-
5 学习模式
5.1 监督学习(Supervised Learning)
-
Regression
(回归):它的输出是一个数值 -
Classification
(分类):-
Binary Classification
(二元分类):它的输出是Yes
orNo
-
Multi-class Classification
(多元分类):它的输出是正确类别 -
模型的选择:
- 线性模型
- 非线性模型(包含
Deep Learning
、SVM
、decision tree
、K-NN
...)Image Recognition
Playing GO
-
5.2 半监督学习(Semi-supervised Learning)
在label
也就是output
很难获取的前提下出现的学习模式
使得没有label
的数据对学习也具有帮助
5.3 迁移学习(Transfer Learning)
在label
也就是output
很难获取的前提下出现的学习模式
探寻与需要辨识的数据不相关的数据与需要辨识数据之前的相关性
5.4 无监督学习(Unsupervised Learning)
在完全没有label
的情况下机器的学习模式
机器的自主学习
例如:仅仅给机器一大堆文献或文章,不给文章中词句的词性、语义等信息,看看机器会发现些什么,会理解什么。
5.5 结构学习(Structured Learning)
它的输出是一个有结构性的信息
-
语音识别:输入声音信号,输出是一个完整的语句,语句具有结构性。
-
机器翻译:输入是中文语句,输出是英文语句。
-
人脸识别:输入是图片,输出是图片的人物名称
5.6 强化学习(Reinforcement Learning)
-
Supervised(有完整且正确的输入输出进行训练学习,即从一个手把手教它的老师学习)
-
Reinforcement(经历未知的过程,得到的只有对过程结果好与坏的评分,即从评价中进行学习)
5.7 总结
- 蓝色方块指的是学习情景,学习的情景大多是没办法自由控制的。根据你所具有的数据来决定。
- 红色方块指的是要解决的问题。
- 绿色方块指的是模型,同样的
task
可以用不同的模型来解决。