AcWing 379. 捉迷藏
Solution
每条路径上的任意点都可以相互看到。那么我们可以求出这个图的最小路径重复点覆盖的条数 c n t cnt cnt 。 每条路径上我们至少可以选出一个点。 故藏身点的数量就等于最小路径重复点覆盖的条数。
记最小路径重复点覆盖数为 c n t cnt cnt ,该题的答案就是 c n t cnt cnt
证明
- k ≤ c n t k\le cnt k≤cnt
这
c
n
t
cnt
cnt 条路径覆盖了所有的点,所以所求的
k
k
k 个点一定要从这
c
n
t
cnt
cnt 条路径中的点选,
并且每条路径上最多选一个点,所以
k
≤
c
n
t
k \le cnt
k≤cnt
- k ≥ c n t k\ge cnt k≥cnt
构造:将 c n t cnt cnt 条路径的终点都放到一个集合 E E E 中,记 n e x t ( E ) next(E) next(E) 返回的是从 E E E 中的每个点出发能到的所有点的集合
分类讨论:
- E ∩ n e x t ( E ) = ∅ E \cap next(E) = \emptyset E∩next(E)=∅ ,此时 E E E 内的点不能相互到达,说明 E E E中所有的点就是一种 k = c n t k=cnt k=cnt 的方案
- E ∩ n e x t ( E ) ≠ ∅ E \cap next(E) \ne \emptyset E∩next(E)=∅ , 对于 E E E 中的任何一个点 p p p,让这个点反向走,直到这个点走到一个不在 n e x t ( E − p ) next(E-p) next(E−p) 中的点,可证当这个点走到起点时肯定不在 n e x t ( E − p ) next(E-p) next(E−p) 中。
反证法:
如果这个点走到起点,仍在 n e x t ( E − p ) next(E-p) next(E−p) 中,说明 p p p 所在的路径的起点可以被其他路径到达,那么这条路径就没有存在的意义可以省去,不满足最小路径重复点覆盖。
所以此时同样可以在每一条路径中选出一个点,使得这些点之间两两不可到达,即 k = c n t k=cnt k=cnt
Code
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int, int> PII;
#define debug(a) cout << #a << " " << a << endl
const int maxn = 350;
const int N = 1e6 + 7, M = N * 2;
const int inf = 0x3f3f3f3f;
const long long mod = 1e9 + 7;
inline long long read();
bool d[maxn][maxn];
int n, m;
bool st[maxn];
int match[maxn];
bool find(int x) {
for(int i = 1; i <= n; i++) {
if(d[x][i] && !st[i]) {
st[i] = true;
int t = match[i];
if(t == 0 || find(t)) {
match[i] = x;
return true;
}
}
}
return false;
}
int main() {
// freopen("input.txt", "r", stdin);
// freopen("output.txt", "w", stdout);
// ios::sync_with_stdio(false);
scanf("%d%d", &n, &m);
while(m--) {
int a, b;
scanf("%d%d", &a, &b);
d[a][b] = true;
}
//求转递闭包 floyd
for(int k = 1; k <= n; k++)
for(int i = 1; i <= n; i++)
for(int j = 1; j <= n; j++)
d[i][j] |= d[i][k] & d[k][j];
int res = 0;
for(int i = 1; i <= n; i++) {
memset(st, false, sizeof st);
if(find(i)) res++;
}
printf("%d\n", n - res);
return 0;
}
/*
数组开够了吗 开到上界的n+1次方
初始化了吗
*/
inline LL read() {
char ch = getchar();
LL p = 1, data = 0;
while(ch < '0' || ch > '9') {
if(ch == '-')p = -1;
ch = getchar();
}
while(ch >= '0' && ch <= '9') {
data = data * 10 + (ch ^ 48);
ch = getchar();
}
return p * data;
}