AcWing 379. 捉迷藏 二分图 最小路径重复点覆盖

AcWing 379. 捉迷藏

Solution

每条路径上的任意点都可以相互看到。那么我们可以求出这个图的最小路径重复点覆盖的条数 c n t cnt cnt 。 每条路径上我们至少可以选出一个点。 故藏身点的数量就等于最小路径重复点覆盖的条数。

记最小路径重复点覆盖数为 c n t cnt cnt ,该题的答案就是 c n t cnt cnt

证明

  1. k ≤ c n t k\le cnt kcnt

c n t cnt cnt 条路径覆盖了所有的点,所以所求的 k k k 个点一定要从这 c n t cnt cnt 条路径中的点选,
并且每条路径上最多选一个点,所以 k ≤ c n t k \le cnt kcnt

  1. k ≥ c n t k\ge cnt kcnt

构造:将 c n t cnt cnt 条路径的终点都放到一个集合 E E E 中,记 n e x t ( E ) next(E) next(E) 返回的是从 E E E 中的每个点出发能到的所有点的集合

分类讨论:

  • E ∩ n e x t ( E ) = ∅ E \cap next(E) = \emptyset Enext(E)= ,此时 E E E 内的点不能相互到达,说明 E E E中所有的点就是一种 k = c n t k=cnt k=cnt 的方案
  • E ∩ n e x t ( E ) ≠ ∅ E \cap next(E) \ne \emptyset Enext(E)= , 对于 E E E 中的任何一个点 p p p,让这个点反向走,直到这个点走到一个不在 n e x t ( E − p ) next(E-p) next(Ep) 中的点,可证当这个点走到起点时肯定不在 n e x t ( E − p ) next(E-p) next(Ep) 中。

反证法:

如果这个点走到起点,仍在 n e x t ( E − p ) next(E-p) next(Ep) 中,说明 p p p 所在的路径的起点可以被其他路径到达,那么这条路径就没有存在的意义可以省去,不满足最小路径重复点覆盖。

所以此时同样可以在每一条路径中选出一个点,使得这些点之间两两不可到达,即 k = c n t k=cnt k=cnt

Code

#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int, int> PII;
#define debug(a) cout << #a << " " << a << endl
const int maxn = 350;
const int N = 1e6 + 7, M = N * 2;
const int inf = 0x3f3f3f3f;
const long long mod = 1e9 + 7;
inline long long read();

bool d[maxn][maxn];
int n, m;
bool st[maxn];
int match[maxn];

bool find(int x) {
	for(int i = 1; i <= n; i++) {
		if(d[x][i] && !st[i]) {
			st[i] = true;
			int t = match[i];
			if(t == 0 || find(t)) {
				match[i] = x;
				return true;
			}
		}
	}
	return false;
}

int main() {

//	freopen("input.txt", "r", stdin);
//	freopen("output.txt", "w", stdout);

//	ios::sync_with_stdio(false);

	scanf("%d%d", &n, &m);
	while(m--) {
		int a, b;
		scanf("%d%d", &a, &b);
		d[a][b] = true;
	}

	//求转递闭包 floyd
	for(int k = 1; k <= n; k++)
		for(int i = 1; i <= n; i++)
			for(int j = 1; j <= n; j++)
				d[i][j] |= d[i][k] & d[k][j];

	int res = 0;
	for(int i = 1; i <= n; i++) {
		memset(st, false, sizeof st);
		if(find(i)) res++;
	}

	printf("%d\n", n - res);

	return 0;
}


/*
数组开够了吗 开到上界的n+1次方
初始化了吗
*/







inline LL read() {
	char ch = getchar();
	LL p = 1, data = 0;
	while(ch < '0' || ch > '9') {
		if(ch == '-')p = -1;
		ch = getchar();
	}
	while(ch >= '0' && ch <= '9') {
		data = data * 10 + (ch ^ 48);
		ch = getchar();
	}
	return p * data;
}







评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值