高斯消元基础

高斯消元

解决的问题

O ( n 3 ) O(n^3) O(n3) 的时间复杂度内求解一个多元线性方程组
{ a 11 x 1 + a 12 x 2 + . . . + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + . . . + a 2 n x n = b 2 . . . . . . a n 1 x 1 + a n 2 x 2 + . . . + a n n x n = b n \left\{ \begin{aligned} &a_{11}x_1+a_{12}x_2+...+a_{1n}x_n=b_1\\ &a_{21}x_1+a_{22}x_2+...+a_{2n}x_n=b_2\\ &...\\ &...\\ &a_{n1}x_1+a_{n2}x_2+...+a_{nn}x_n=b_n \end{aligned} \right. a11x1+a12x2+...+a1nxn=b1a21x1+a22x2+...+a2nxn=b2......an1x1+an2x2+...+annxn=bn
对于这个方程,有三种解的情况

  1. 无解 → \to 0 = b   ( b ≠ 0 ) 0= b \ (b\ne 0) 0=b (b=0)
  2. 有无穷多组解 → \to 0 = 0 0=0 0=0
  3. 有唯一解 → \to 变换后构成完美的阶梯型

对于方程组的系数,提取出增广矩阵

使用初等行列变换将方程组,把增广矩阵,变为阶梯型矩阵

  1. 把某一行乘一个非0的数 (方程的两边同时乘上一个非0数不改变方程的解)
  2. 交换某两行 (交换两个方程的位置)
  3. 把某行的若干倍加到另一行上去 (把一个方程的若干倍加到另一个方程上去)

算法步骤

枚举每一列,

  1. 找到当前列绝对值最大(精度更高)的一行 (找不固定的方程)
  2. 用初等行变换 (2) 把这一行换到最上面(未确定阶梯型的行,并不是第一行)
  3. 用初等行变换 (1) 将该行的第一个数变成 1 (其余所有的数字依次跟着变化)
  4. 用初等行变换 (3) 将下面所有行的当前列的值变成 0

Code

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> PII;
#define debug(a) cout << #a << " " << a << endl
const int maxn = 1e5 + 7;
const int N = 510, M = N * 2;
const int inf = 0x3f3f3f3f;
const long long mod = 1e9 + 7;

int n;
double a[N][N];
const double eps = 1e-6;

int gauss() {
	int r, c;

	for(r = 0, c = 0; c < n ; c++) {
		int t = r;
		for (int i = r ; i < n; i++) {
			if(fabs(a[i][c]) > fabs(a[t][c])) {
				t = i;
			}
		}

		if(fabs(a[t][c]) < eps) continue; //如果这一列最大数为0,那么所有数都是0,没有必要继续算

		for(int i = c; i <= n; i ++) swap(a[t][i], a[r][i]); //把选中的绝对值最大的那行换到上面去
		for(int i = n; i >= c; i --) a[r][i] /= a[r][c];// 把当前这一行的第一个数,变成 1
		for(int i = r + 1; i < n; i ++) { // 把当前列下面的所有数,全部消成 0
			if(fabs(a[i][c]) > eps) { //如果不是0才继续操作
				for(int j = n; j >= c; j--) {
					a[i][j] -= a[r][j] * a[i][c];
				}
			}
		}


		r++;
	}

	if(r < n) {
		for(int i = r; i < n; i++) {
			if(fabs(a[i][n]) > eps) return 2; //无解
		}
		return 1; //有无穷多组解
	}

	//求出有唯一解的方程的解

	for(int i = n - 1; i >= 0; i--) {
		for(int j = i + 1; j < n; j++) {
			a[i][n] -= a[i][j] * a[j][n]; //对于每一个bi,减去已知的系数乘上xi的值,得到的bi就是ans
		}
	}

	return 0;//有唯一解

}

int main() {

	cin >> n;
	for(int i = 0; i < n; i++)
		for(int j = 0; j < n + 1; j++)
			cin >> a[i][j];

	int t = gauss();

	if(t == 0) {
		for(int i = 0; i < n; i++) printf("%.2lf\n", a[i][n]);
	}
	else if (t == 1) {
		puts("Infinite group solutions");
	}
	else if (t == 2) {
		puts("No solution");
	}


	return 0;
}
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值