填充每个节点的下一个右侧节点指针
题目描述:
给定一个 完美二叉树 ,其所有叶子节点都在同一层,每个父节点都有两个子节点。二叉树定义如下:
struct Node {
int val;
Node *left;
Node *right;
Node *next;
}
填充它的每个 next 指针,让这个指针指向其下一个右侧节点。如果找不到下一个右侧节点,则将 next 指针设置为 NULL。
初始状态下,所有 next 指针都被设置为 NULL。
进阶:
你只能使用常量级额外空间。
使用递归解题也符合要求,本题中递归程序占用的栈空间不算做额外的空间复杂度。
示例:
输入:root = [1,2,3,4,5,6,7]
输出:[1,#,2,3,#,4,5,6,7,#]
解释:给定二叉树如图 A 所示,你的函数应该填充它的每个 next 指针,以指向其下一个右侧节点,如图 B 所示。序列化的输出按层序遍历排列,同一层节点由 next 指针连接,’#’ 标志着每一层的结束。
提示:
树中节点的数量少于 4096
-1000 <= node.val <= 1000
方法一(层次遍历):
// Definition for a Node.
class Node {
public:
int val;
Node* left;
Node* right;
Node* next;
Node() : val(0), left(NULL), right(NULL), next(NULL) {}
Node(int _val) : val(_val), left(NULL), right(NULL), next(NULL) {}
Node(int _val, Node* _left, Node* _right, Node* _next)
: val(_val), left(_left), right(_right), next(_next) {}
};
class Solution{
public:
Node* connect(Node* root){
if(root==NULL) return NULL;
queue<Node*> que1;
que1.push(root);
while(!que1.empty()){
Node* node=que1.front();
que1.pop();
int sz=que1.size();
if(node->left!=NULL) que1.push(node->left);
if(node->right!=NULL) que1.push(node->right);
while(sz>0){
Node* node1=que1.front();
que1.pop();
if(node1->left!=NULL) que1.push(node1->left);
if(node1->right!=NULL) que1.push(node1->right);
node->next=node1;
node=node1;
sz--;
}
}
return root;
}
};
方法二:(利用已形成的next指针)
// Definition for a Node.
class Node {
public:
int val;
Node* left;
Node* right;
Node* next;
Node() : val(0), left(NULL), right(NULL), next(NULL) {}
Node(int _val) : val(_val), left(NULL), right(NULL), next(NULL) {}
Node(int _val, Node* _left, Node* _right, Node* _next)
: val(_val), left(_left), right(_right), next(_next) {}
};
class Solution{
Node* connect(Node* root){
if(root==NULL) return NULL;
Node* Pre=root;
while(Pre->left!=NULL){
Node* head=Pre;
while(head!=NULL){
if(head->next!=NULL){
head->left->next=head->right;
head->right->next=head->next->left;
}
else {
head->left->next=head->right;
}
head=head->next;
}
Pre=Pre->left;
}
return root;
}
};