【算法练习】LeetCode-动态规划学习计划

题目来自:https://leetcode-cn.com/study-plan/dynamic-programming/?progress=nc4eyhc

爬楼梯(简单)

在这里插入图片描述

class Solution {
    public int climbStairs(int n) {
        if (n <= 2 ) {
            return n;
        }
        int[] ans = new int[n + 1];
        ans[1] = 1;
        ans[2] = 2;
        for (int i = 3; i <= n; i++) {
            ans[i] = ans[i - 1] + ans[i - 2];
        }
        return ans[n];
    }
}

使用最小花费爬楼梯(简单)(爬楼梯进阶版本)

在这里插入图片描述
注意,cost的最后一个元素不是楼顶,还需要爬一次才到楼顶, 还需要注意状态转移方程和base case。

状态转移方程:
d p [ n ] = m i n ( d p [ n − 1 ] + c o s t [ n − 1 ] , d p [ n − 2 ] + c o s t [ n − 2 ] ) dp[n] = min(dp[n-1] + cost[n-1], dp[n-2] + cost[n-2]) dp[n]=min(dp[n1]+cost[n1],dp[n2]+cost[n2])
初始情况:因为题目说可以从0、1下标的台阶开始,所以它们的花费=0。

class Solution {
    public int minCostClimbingStairs(int[] cost) {
        // min(dp[n-1]+cost[n-1], dp[n-2]+cost[n-2])
        int n = cost.length;
        int[] dp = new int[n + 1];
        // base case
        dp[0] = 0;
        dp[1] = 0;
        // 迭代所有状态
        for (int i = 2; i <= n; i++) {
            dp[i] = Math.min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);
        }
        return dp[n];
    }
}

打家劫舍(中等)

在这里插入图片描述
思考这么一个问题,对于某一号房间,具有什么状态? 很简单就是抢和不抢, 所以就可以写出状态转移方程:
d p [ n ] = m a x ( d p [ n − 1 ] , d p [ n − 2 ] + n u m s [ n ] ) dp[n] = max(dp[n-1], dp[n-2] + nums[n]) dp[n]=max(dp[n1],dp[n2]+nums[n])
选择不抢,那么旁边的就可以抢;选择抢,那么旁边的就不可以抢,比较抢和不抢的价值,即可得出最终答案。

初始情况,第1号房间就是其本身的价值(因为就它一间房子,只有抢了价值才最大),第二号房间就要判断抢第1号房间,还是抢第2号房间,选择价值更大的房间来抢。

注意题目中1号房间的下标是0。

class Solution {
    public int rob(int[] nums) {
        // 对于每间房屋有两种状态:抢(加上这家的价值)、不抢(那就看旁边一家的价值)
        // dp[n] = max(dp[n-1], dp[n-2] + nums[n])
        // 注意题目中下标0记录的是一号房间的价值
        int n = nums.length;
        if (n == 1) {
            return nums[0];
        }
        if (n == 2) {
            return Math.max(nums[0], nums[1]);
        }
        int[] dp = new int[n + 1];
        // base case
        // 房间号从 1 开始
        dp[1] = nums[0];
        // 2号房间分为:抢1号房间、不抢1号房间
        dp[2] = Math.max(nums[0], nums[1]);
        // 遍历所有状态
        for (int i = 3; i <= n; i++) {
            // nums[i - 1]是因为nums的1号房间从下标0开始
            dp[i] = Math.max(dp[i - 1], dp[i - 2] + nums[i - 1]);
        }
        return dp[n];
    }
}

打家劫舍Ⅱ(中等)

在这里插入图片描述
和上一道题不同在于,1号房间和最后一号房间连接在一起了,想一想这会导致什么问题?
连接在一起了说明,1号房间一旦被抢,最后一号房间就不能被抢;而1号房间没被抢,最后一号房间可能被抢(注意只是可能,因为最后一号房间可以抢或者不抢)。上一道题1号房间只有一种状态,但本题1号房间有两种状态,必须要确定下1号房间的状态,才能确定后续房间的状态。

所以,我们可以把1号房间的状态分成两种情况进行讨论:抢1号、不抢1号,因为两种情况下dp数组的初始化是不同的。最后再比较两中状态下,总的抢劫钱数,取最大的。

抢1号:那么后续步骤和上一题一样,但是最后第n号房间要注意,dp[n]只能等于dp[n-1],因为n号房间是不能抢的!!!

不抢1号:dp[1]=0,dp[2]=nums[2-1],之后以同样的状态转移方程迭代,注意第n号房间可以抢,也可以不抢。

class Solution {
    public int rob(int[] nums) {
        int n = nums.length;
        if (n == 1) {
            return nums[0];
        }
        if (n == 2) {
            return Math.max(nums[0], nums[1]);
        }
        int[] dp = new int[n+1];
        // 连起来了,那么 1号房可能抢、不抢,我们需要比较两种情况下的价值
        // 先看1号房间抢
        dp[1] = nums[0];
        // 2号房间,看抢 1 号 还是 2号
        dp[2] = Math.max(nums[0], nums[1]); 
        for (int i = 3; i < n; i++) {
            // 分为抢和不抢
            dp[i] = Math.max(dp[i-1], dp[i-2] + nums[i-1]);
        }
        // 注意因为 1号房间抢了,所以 n号房间不能抢!!
        // 此时 n号房间的价值就只能是 dp[n-1]
        int first = dp[n-1];
        // 再看1号房间不抢
        dp = new int[n+1];
        dp[1] = 0;
        dp[2] = nums[1];
        // 虽然1号房间不抢,但是 n 号房间也可能抢、不抢
        // 一定要注意,1号房间不抢,不代表 n号房间就要抢
        for (int i = 3; i <= n; i++) {
            dp[i] = Math.max(dp[i-1], dp[i-2] + nums[i-1]);
        }
        return Math.max(first, dp[n]);
    }
}

为了方便理解,在书写代码时都使用了dp数组,但其实可以用几个指针表示,这样就可以优化空间消耗。

删除并获得点数(中等)

在这里插入图片描述
讨论某一个数,它有两种状态:删除、不删除,如果被删除,直接获得它对应的点数(这里隐藏了,其实获得的点数=对应的点数 * 该数的个数,因为你删除本身一个数,同样一个数在数组中可能还存在,删除它们获得相同的点数,并且不会对数组造成新的影响),所以可以得出状态转移方程,对某个正整数n而言:
d p [ n ] = m a x ( d p [ n − 2 ] + c n t [ n ] ∗ n , d p [ n − 1 ] ) dp[n] = max(dp[n-2]+cnt[n] * n, dp[n-1]) dp[n]=max(dp[n2]+cnt[n]n,dp[n1])

base case:这道题的初始状态怎么设置呢?dp[n]数组代表什么意思?
应该是:“dp[i]表示删除数组nums中的元素i(nums[i])所获得的最大点数为dp[i]。注意,此时你操作的数组元素范围是[0, i]”。
这里其实我们默认是从0开始找最大点数,所以dp[0] = 0,dp[1] = 1 * cnt[1],dp[2] = max(dp[0] + 2 * cnt[2], dp[1])

很多时候,题做多了容易得出状态转移方程,但是却不知道dp数组是什么意思,这样虽然能够做题,但给面试官的印象并不好!

class Solution {
    public int deleteAndEarn(int[] nums) {
        // 第n号数,有两种情况:删除、不删除(一旦删除了,它有多少个就可以拿多少点数)
        // 一定要注意,删除了那个数,得到的点数是:那个数 * 个数
        // dp[n] = max(dp[n-2] + cnt[n] * n号数的个数, dp[n-1])
        int n = nums.length;
        if (n == 1) {
            return nums[0];
        }
        if (n == 2) {
            if (nums[1] == nums[0] + 1 || nums[1] == nums[0] - 1) {
                return Math.max(nums[0], nums[1]);
            } else if (nums[0] == nums[1]) {
                return 2 * nums[0];
            } else {
                return nums[0] + nums[1];
            }
        }
        int max = -1;
        // 找最大值确定数组大小
        for (int i = 0; i < n; i++) {
            if (nums[i] > max) {
                max = nums[i];
            }
        }
        int[] cnt = new int[max + 1];
        // 统计数组中各数个数
        for (int i = 0; i < n; i++) {
            cnt[nums[i]]++;
        }
        int[] dp = new int[max + 1];
        // dp[i]表示1 <= x <= i 的整数范围内能够构成的最大值
        dp[1] = 1 * cnt[1];
        dp[2] = Math.max(dp[0] + 2 * cnt[2], dp[1]);
        for (int i = 3; i <= max; i++) {
            dp[i] = Math.max(dp[i - 2] + i * cnt[i], dp[i - 1]);
        }
        return dp[max];
    }
}

跳跃游戏(中等)

在这里插入图片描述
初步感知,遍历每一个下标和其元素,将能到达的位置标记为true。

class Solution {
    public boolean canJump(int[] nums) {
        // nums[i]是该位置可以跳跃的最大长度,意思是可以跳、不跳
        // nums[0] = 2 dp[0] = true dp[1] = true dp[2] = true
        int n = nums.length;
        if (nums[0] >= n - 1) {
            return true;
        }
        boolean[] dp = new boolean[n];
        for (int i = 0; i <= nums[0]; i++) {
            dp[i] = true;
        }
        for (int i = 1; i < nums.length; i++) {
            if (dp[i] == true) {
                for (int j = 0; j <= nums[i]; j++) {
                    if ((i + j) < n) {
                        dp[i + j] = true;
                    } else {
                        break;
                    }
                }
            }
        }
        return dp[n - 1];
    }
}

是否可以优化?注意每个下标对应的元素是指能够跳跃的最大位置,意思是说可以跳0-n步,那么我们直接看它当前下标最多能跳多远就可以了,因为小于最大下标的位置都可以跳到。

class Solution {
    public boolean canJump(int[] nums) {
        // nums[i]是该位置可以跳跃的最大长度,意思是可以跳、不跳
        // 关键点:如果从当前位置最远能够到达 k,那么在 k 之前的位置都是可以到达的
        int n = nums.length;
        int dp = 0;
        for (int i = 0; i < n; i++) {
            if (dp < i) {
                // 前面最大值的情况都到不了i下标了
                return false;
            }
            // 只用更新能跳到的最远下标即可,因为小于最远下标的所有下标都能跳到
            dp = Math.max(dp, i + nums[i]);
        }
        return dp >= (n - 1);
    }
}

从上面代码可以看出,其实解题思路更偏向贪心,动态规划也能解,只是速度慢。

跳跃游戏Ⅱ(中等)

在这里插入图片描述
遍历当前下标能够到达的下标,如果跳跃数更小,就更新该下标的跳跃数,dp数组记录到达每个下标所需的最小跳跃数。

class Solution {
    public int jump(int[] nums) {
        int n = nums.length;
        if (n == 1) {
            return 0;
        }
        int[] dp = new int[n];
        Arrays.fill(dp, n);
        dp[0] = 0;
        for (int i = 0; i < n; i++) {
            // 记录下当前下标能跳到的最远位置
            int k = i + nums[i];
            int j = i + 1;
            while (j <= k && j < n) {
                dp[j] = Math.min(dp[j], dp[i] + 1);
                j++;
            }
        }
        return dp[n - 1];
    }
}

最大子数组和(简单)

在这里插入图片描述
对于数组中某一个数,具有两种状态,选它、不选它。选它,那么全局和就加上它,不选它,那么全局和就是它自己,因为子数组必须连续且至少有一个数dp数组的含义是:第 i 个数结尾的「连续子数组的最大和」(在题目条件下),所以很容易就能写出状态转移方程:
d p [ n ] = m a x ( d p [ n − 1 ] + n u m s [ n ] , n u m s [ n ] ) dp[n] = max(dp[n-1] + nums[n], nums[n]) dp[n]=max(dp[n1]+nums[n],nums[n])
也可以写成:因为如果前一个dp为负数,怎么加都会小于自身的nums,所以直接看前一个dp值即可
d p [ n ] = n u m s [ n ] + m a x ( d p [ n − 1 ] , 0 ) dp[n] = nums[n] + max(dp[n-1], 0) dp[n]=nums[n]+max(dp[n1],0)
注意,因为dp数组的含义是必须以第 i 个数结尾的连续子数组的最大和,所以dp[n]不一定能成为全局最大值,应该时刻比较记录最大值。

写出相应代码如下:

class Solution {
    public int maxSubArray(int[] nums) {
        // 对于某一个数,有两种状态:选它,不选它
        // 如果不选它,前 i 个数能组成的最大和就是它本身(因为必须至少包含一个数
        // 如果选它,全局和 + 当前数
        int n = nums.length;
        int[] dp = new int[n + 1];
        // dp数组代表数组前 i 个数,能够组成的最大和(注意:是连续的子数组且必须包含一个数)
        dp[0] = 0;
        int max = Integer.MIN_VALUE;
        // dp[n] = max(nums[n], dp[n-1] + nums[n])
        for (int i = 1; i <= n; i++) {
            dp[i] = Math.max(nums[i - 1], dp[i - 1] + nums[i - 1]);
            max = Math.max(dp[i], max);
        }
        return max;
    }
}

扩展:由本题的状态转移方程,可以推出最小子数组和的状态转移方程,如下:
d p [ n ] = m i n ( d p [ n − 1 ] + n u m s [ n ] , n u m s [ n ] ) dp[n] = min(dp[n - 1] + nums[n], nums[n]) dp[n]=min(dp[n1]+nums[n],nums[n])
也可以写成:
d p [ n ] = n u m s [ n ] + m i n ( d p [ n − 1 ] , 0 ) dp[n] = nums[n] + min(dp[n - 1], 0) dp[n]=nums[n]+min(dp[n1],0)

※环形子数组最大和(中等)(上一题升级版)

在这里插入图片描述

在这里插入图片描述
如上图所示,产生最大和的子数组无非就两种情况,一种不成环,一种成环。成环的情况用上一题方法直接求解,成环的情况该如何求解?

直接给出结论:成环情况的最大值=数组总和 - 未成环部分的最小子数组和

这里贴出LeetCode上的证明:
地址:https://leetcode-cn.com/problems/maximum-sum-circular-subarray/solution/wo-hua-yi-bian-jiu-kan-dong-de-ti-jie-ni-892u/
在这里插入图片描述
获得两种情况下的最大值后,比较获得更大的一个,即为最终的答案。

这道题和打家劫舍Ⅱ类似,都要分两种情况讨论,以后遇到成环的问题一定要分开讨论。

class Solution {
    public int maxSubarraySumCircular(int[] nums) {
        // 分两种情况:最大和在未成环状态下产生、最大和在成环状态下产生
        // 先算未成环,就和53题一样,正常求解
        int n = nums.length;
        if (n == 1) {
            return nums[0];
        }
        int[] dp = new int[n];
        dp[0] = nums[0];
        int max = nums[0];
        int sum = nums[0];
        for (int i = 1; i < n; i++) {
            // 采用第二种状态转移方程
            dp[i] = nums[i] + Math.max(dp[i - 1], 0);
            max = Math.max(dp[i], max);
            // 统计数组中所有元素的的和
            sum += nums[i];
        }
        // 再统计成环的情况,那么最大和的子数组一定包含第一个元素和最后一个元素(只有这样才能成环)
        // 假设数组范围:nums[0] - nums[n - 1]
        // 那么遍历范围:nums[1] - nums[n - 2
        int min = nums[1];
        for (int i = 1; i < n - 1; i++) {
            dp[i] = nums[i] + Math.min(dp[i - 1], 0);
            min = Math.min(min, dp[i]);
        }
        return Math.max(sum - min, max);
    }
}

※乘积最大子数组(中等)

在这里插入图片描述
先来直观的想法,和53题(最大子数组和)一样,写出状态转移方程:
d p [ n ] = m a x ( d p [ n − 1 ] ∗ n u m s [ n ] , n u m s [ n ] ) dp[n] = max(dp[n-1]*nums[n], nums[n]) dp[n]=max(dp[n1]nums[n],nums[n])
这个写法是否有问题? 显然是有问题的,例如:-3,2,-3,上面方程得出的结果是2,但是实际是18,问题在于少考虑了负负得正的情况! 负负得正的情况是在当前数为负数的情况下才考虑,并且要是前面能获得的最小负数,乘出来的结果才可能大;如果是正数直接考虑前面的最大值即可。

新的状态转移方程:
m a x a r r [ n ] = m a x ( n u m s [ n ] , m a x a r r [ n − 1 ] ∗ n u m s [ n ] , m i n a r r [ n − 1 ] ∗ n u m s [ n ] ) maxarr[n] = max(nums[n], maxarr[n-1] * nums[n], minarr[n-1] * nums[n]) maxarr[n]=max(nums[n],maxarr[n1]nums[n],minarr[n1]nums[n])
m i n a r r [ n ] = m i n ( n u m s [ n ] , m a x a r r [ n − 1 ] ∗ n u m s [ n ] , m i n i a r r [ n − 1 ] ∗ n u m s [ n ] ) minarr[n] = min(nums[n], maxarr[n-1] * nums[n], miniarr[n-1] *nums[n]) minarr[n]=min(nums[n],maxarr[n1]nums[n],miniarr[n1]nums[n])

maxarr[i] 和 minarr[i],代表以第i个数结尾的最大、最小子数组乘积。

class Solution {
    public int maxProduct(int[] nums) {
        // 53题的改编题
        int n = nums.length;
        int[] max_arr = new int[n];
        int[] min_arr = new int[n];
        max_arr[0] = nums[0];
        min_arr[0] = nums[0];
        // max_arr[i]指以第i个数结尾的子数组的最大乘积
        // min_arr[i]指以第i个数结尾的子数组的最小乘积
        // 考虑数组中某个数nums[i],需要考虑负数 * 负数 和 正数 * 正数,最大值一定在它们之间产生
        int max = nums[0];
        for (int i = 1; i < n; i++) {
            max_arr[i] = Math.max(nums[i], Math.max(max_arr[i - 1] * nums[i], min_arr[i - 1] * nums[i]));
            min_arr[i] = Math.min(nums[i], Math.min(max_arr[i - 1] * nums[i], min_arr[i - 1] * nums[i]));
            max = Math.max(max_arr[i], max);
        }
        return max;
    }
}

※乘积为正数的最长子数组长度(中等+)

在这里插入图片描述
第一次遇到没有想出来,但知道应该是要分成正负情况讨论的(和上一题一样),下面开始讨论:
在这里插入图片描述
题解地址: https://leetcode-cn.com/problems/maximum-length-of-subarray-with-positive-product/solution/cheng-ji-wei-zheng-shu-de-zui-chang-zi-shu-zu-ch-3/

对上述题解的说明:
1、nums[i] > 0 时,pos数组的计算:pos[i] = pos[i - 1] + 1,如果pos[i - 1] = 0,说明以第 i - 1个数结尾的连续数组的乘积非正(就是可能为0、负数),但nums[i]本身是正数,所以得+1;如果pos[i - 1] != 0,说明以第 i - 1个数结尾的连续数组的乘积为正,那就是“正大光明”地+1即可。综上,不管pos[i - 1]的大小,都可以写成pos[i] = pos[i - 1] + 1。

2、nums[i] > 0 时,neg数组的计算为什么不能直接 neg[i] = neg[i - 1] + 1?,因为如果neg[i - 1] = 0,说明以第 i - 1个数结尾的连续数组的乘积非负(可能为正、可能为0)而nums[i]本身又是大于0的数,不可能是+1,应该就是0。如果neg[i - 1] > 0,说明以第 i - 1个数结尾的连续数组的乘积为负,乘上正数还为负,所以neg[i] = neg[i - 1] + 1。综上,需要对neg[i - 1]的大小进行判断,写出相应的状态转移方程。

3、对nums[i] < 0的讨论同理,neg[i] = pos[i - 1] + 1无论pos[i - 1]的大小都可以直接使用,因为nums[i]本身是小于0的。pos[i]的更新要取决于neg[i - 1],如果neg[i - 1] > 0,说明以第 i - 1个数结尾的连续数组的乘积为负,负负得正,所以pos[i] = neg[i - 1] + 1;如果neg[i - 1] = 0,说明xxxx乘积为非负(可正、可0),加之nums[i]本身是负数,所以neg[i] = 0。

4、最后还需要讨论nums[i] = 0的情况,一旦为0,neg[i] pos[i] 都为0,0乘任何数=0。

neg、pos数组的含义:以第 i 个数结尾的子数组乘积为负、正的最大长度。

class Solution {
    public int getMaxLen(int[] nums) {
        int n = nums.length;
        int[] pos = new int[n];
        int[] neg = new int[n];
        if (nums[0] > 0) {
            pos[0] = 1;
        }
        if (nums[0] < 0) {
            neg[0] = 1;
        }
        // 第一个数为0的话,都为0,默认数组=0
        int max = pos[0];
        for (int i = 1; i < n; i++) {
            if (nums[i] > 0) {
                pos[i] = pos[i - 1] + 1;
                if (neg[i - 1] > 0) {
                    neg[i] = neg[i - 1] + 1;
                }else {
                    neg[i] = 0;
                }
            } else if (nums[i] < 0) {
                // pos[i - 1] = 0 、> 0都是成立的,别忘了这是乘积
                neg[i] = pos[i - 1] + 1;
                if (neg[i - 1] > 0) {
                    // 负负得正
                    pos[i] = neg[i - 1] + 1;
                } else {
                    // 非负(可正、可0)
                    pos[i] = 0;
                }
            } else {
                // 当前元素 = 0
                pos[i] = 0;
                neg[i] = 0;
            }
            // 找的是乘积为正的最长子数组长度
            max = Math.max(max, pos[i]);
        }
        return max;
    }
}

遇到乘积问题一定要讨论正负情况!

最佳观光组合(中等)(脑筋急转弯)

在这里插入图片描述
把values[i] + values[j] + i - j,拆分为values[i] + i,values[j] - j,对于第 j 个景点,values[j] - j 是固定的,只需找到values[i] + i 的最大值。

class Solution {
    public int maxScoreSightseeingPair(int[] values) {
        // 两个景点:i、j组合得分 = values[i] + values[j] - (j - i)
        // 对于经典 j,它的values[j] - j 是固定的,只需找到max(values[i] + i)即可
        // max(values[i] + i)可以在遍历的过程中直接得到
        int mx = values[0] + 0;
        int ans = 0;
        for (int i = 1; i < values.length; i++) {
            ans = Math.max(ans, values[i] - i + mx);
            mx = Math.max(mx, values[i] + i);
        }
        return ans;
    }
}

持续更新ing…

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

@u@

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值