- 概念
强连通分量:有向图 G=(V,E) 的强连通分量是一个最大结点集合 C⊆V , ∀u,v∈C ,u和v是可以相互到达的。 - 算法伪代码
STRONGLY-CONNECTED-COMPONENTS(G)
call DFS(G) to compute finishing times u.f for each vertex u
compute GT
call DFS(GT),but in the main loop of DFS,consider the vertices in order of decreasing u.f(as computed in line 1)
output the vertices of each tree in the depth-first forest formed in line 3 as a separate strongly connected component
- 证明
①
引理1:设 C,C′ 为有向图 G=(V,E) 的两不同连通分量。
u、v∈C,u′、v′∈C′,∃u→u′⇒不存在v′→v
证明:(反证法)∃v′→v⇒∃u→u′→v′、v′→v→u
因此, u、v′ 可相互到达,与 C,C′ 是不同的连通分量的假设矛盾。
②
概念:
1。 u.d、u.f 分别是STRONGLY-CONNECTED-COMPONENTS的第一行算出的每个结点的发现时间和完成时间。
2。 对于结点集 U⊆G.V ,定义 d(U)=minu∈U{u.d},f(U)=maxu∈U{u.f}
引理2:设 C,C′ 为有向图 G=(V,E) 的两不同连通分量。
∃(u,v)∈G.E,其中u∈C,v∈C′⇒f(C)>f(C′)
证明:(分类讨论)
根据深度优先搜索算法中最早发现的结点在哪个强连通分量里分类。
第一种情况: d(C)<d(C′)
设x为C中最早被发现的结点。 ⇒ x.d 时 ∀p∈C⋃C′ ,p是白色的。 记为I。
I ⇒∀p∈C 都有一条全部由白色结点组成的路径 x→p 。记为II。
由I和 (u,v)∈G.E⇒∀p∈G′ 都有一条全部由白色结点组成的路径 x→u→v→p 。记为III.
由II和III ⇒ ∀p∈C⋃C′ 都有一条全部由白色结点组成的路径 x→p白色定理−→−−−−⇒ p是x的后代 推论22.8−→−−−−⇒x.f>p.f⇒x.f=f(C)>f(C′)
其中的推论22.8是:在有向或无向图G的深度优先森林中,
结点v是结点u的后代 ⇔u.d<v.d<v.f<u.f
第二种情况: d(C)>d(C′)
设y为 C′ 中最早被发现的结点。 ⇒C′ 中所有结点都是白色的。 ⇒∀p∈C′ 存在一条白色路径 y→p白色定理−→−−−−⇒ p是y的后代 推论22.8−→−−−−⇒y.f>p.f⇒y.f=f(C′)
(u,v)∈G.E引理1−→−−⇒ 不可能存在一条从 C′到C 的路径。
y.d 时刻连通分量C中的所有结点都是白色,所以 ∀p∈C,p.f>y.f⇒f(C)>f(C′)
③
由引理2可以得到推论1:
设 C和C′ 为有向图 G=(V,E) 的两个不同的强连通分量,
∃(u,v)∈GT.E,其中u∈C,v∈C′⇒f(C)<f(C′)
要证明算法STRONGLY-CONNECTED-COMPONENTS能够正确计算出有向图的的连通分量,可以通过对算法第3行对图
GT
进行深度优先搜索时所发现的深度优先树的棵树进行归纳。
k=0时,归纳假设成立。
假设算法第3行所生成的前面k棵树都是强连通分量。
设结点u为第(k+1)棵树的根节点,
C
为u所在的强连通分量,
在u.d时刻C中的所有结点都是白色的,由白色定理知C中其他结点都是u在深度优先搜索树中的后代。
由推论1知,假如转置图
GT
中有从
C
发出到其他强连通分量的边,那么只能指向已经访问过的强连通分量
- 总结
强连通分量算法的证明过程使用了反证法,分类讨论和数学归纳法等重要数学方法和思想。简单来说,因为推论1的正确性可以证明了除了C强连通分量的结点外的结点都不可能成为u结点的后代,以及进行深度优先搜索时C中其他结点与u的关系,从而得出连通分量与深度优先树的一一对应关系。而推论1由引理2得出,引理2又由引理1以及推论22.8得到。