算法导论-证明强连通分量算法

  • 概念
    强连通分量:有向图 G=(V,E) 的强连通分量是一个最大结点集合 CV u,vC ,u和v是可以相互到达的。
  • 算法伪代码
    STRONGLY-CONNECTED-COMPONENTS(G)
call DFS(G) to compute finishing times u.f for each vertex u
compute GT
call DFS(GT),but in the main loop of DFS,consider the vertices in order of decreasing u.f(as computed in line 1)
output the vertices of each tree in the depth-first forest formed in line 3 as a separate strongly connected component
  • 证明

    引理1:设 C,C 为有向图 G=(V,E) 的两不同连通分量。
    uvC,uvCuuvv

    证明:(反证法)
    vvuuvvvu

    因此, uv 可相互到达,与 C,C 是不同的连通分量的假设矛盾。

    概念:
    1 u.du.f 分别是STRONGLY-CONNECTED-COMPONENTS的第一行算出的每个结点的发现时间和完成时间。
    2 对于结点集 UG.V ,定义 d(U)=minuU{u.d},f(U)=maxuU{u.f}
    引理2:设 C,C 为有向图 G=(V,E) 的两不同连通分量。
    (u,v)G.EuC,vCf(C)>f(C)

    证明:(分类讨论)
    根据深度优先搜索算法中最早发现的结点在哪个强连通分量里分类。
    第一种情况: d(C)<d(C)
    设x为C中最早被发现的结点。 x.d pCC ,p是白色的。 记为I。
    I pC 都有一条全部由白色结点组成的路径 xp 。记为II。
    由I和 (u,v)G.EpG 都有一条全部由白色结点组成的路径 xuvp 。记为III.
    由II和III pCC 都有一条全部由白色结点组成的路径 xp p是x的后代 22.8x.f>p.fx.f=f(C)>f(C)
    其中的推论22.8是:在有向或无向图G的深度优先森林中,
    结点v是结点u的后代 u.d<v.d<v.f<u.f
    第二种情况: d(C)>d(C)
    设y为 C 中最早被发现的结点。 C 中所有结点都是白色的。 pC 存在一条白色路径 yp p是y的后代 22.8y.f>p.fy.f=f(C)
    (u,v)G.E1 不可能存在一条从 CC 的路径。
    y.d 时刻连通分量C中的所有结点都是白色,所以 pC,p.f>y.ff(C)>f(C)

    由引理2可以得到推论1
    CC 为有向图 G=(V,E) 的两个不同的强连通分量,
    (u,v)GT.EuC,vCf(C)<f(C)

要证明算法STRONGLY-CONNECTED-COMPONENTS能够正确计算出有向图的的连通分量,可以通过对算法第3行对图 GT 进行深度优先搜索时所发现的深度优先树的棵树进行归纳。
k=0时,归纳假设成立。
假设算法第3行所生成的前面k棵树都是强连通分量。
设结点u为第(k+1)棵树的根节点, C 为u所在的强连通分量,C为除C以外尚未被访问的强连通分量。
在u.d时刻C中的所有结点都是白色的,由白色定理知C中其他结点都是u在深度优先搜索树中的后代。
由推论1知,假如转置图 GT 中有从 C 发出到其他强连通分量的边,那么只能指向已经访问过的强连通分量C′′,才能有 f(C)<f(C′′) 。因此除了 C 以外的强连通分量中的结点不可能在对GT进行深度优先搜索时成为结点u的后代。综上,当且仅当C中的其他结点是结点u的后代,所以第(k+1)棵树也是一个强连通分量。而由归纳假设知算法第3行所生成的前k棵树都是强连通分量,因此由算法第3行所生成的前(k+1)树都是强连通分量。(证毕)

  • 总结
    强连通分量算法的证明过程使用了反证法,分类讨论和数学归纳法等重要数学方法和思想。简单来说,因为推论1的正确性可以证明了除了C强连通分量的结点外的结点都不可能成为u结点的后代,以及进行深度优先搜索时C中其他结点与u的关系,从而得出连通分量与深度优先树的一一对应关系。而推论1由引理2得出,引理2又由引理1以及推论22.8得到。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值