题意:
给出n中卡片,并且给出买零食能获得每种卡片的概率,问凑齐n中卡片要买零食的包数的期望。
题解:
n<=20并且发现这种概率dp有排列组合的特点,想到用状态压缩来做。
那么方程的推导如下:
状态推导:
初始方程: dp[s] = (1-sum(p[i]))*dp[s] + sum(p[j])*dp[s] + sum(p[k])*dp[s|(1<<k)];
其中:
i=0、1、2、3、4、5......n 1-sum(p[i])表示没有卡片的概率(这部分概率可以实现计算好用none表示)
sum(p[j])表示有在已经取到的卡片的概率(这部分概率用has表示)
sum(p[k])未取到的卡片的概率
通过初始方程移向得出:dp[s] = sum(p[k])*dp[s|(1<<k)] / (1-none-has);
/**
状态推导:
初始方程: dp[s] = (1-sum(p[i]))*dp[s] + sum(p[j])*dp[s] + sum(p[k])*dp[s|(1<<k)];
其中:
i=0、1、2、3、4、5......n 1-sum(p[i])表示没有卡片的概率(这部分概率可以实现计算好用none表示)
sum(p[j])表示有在已经取到的卡片的概率(这部分概率用has表示)
sum(p[k])未取到的卡片的概率
通过初始方程移向得出:dp[s] = sum(p[k])*dp[s|(1<<k)] / (1-none-has);
*/
#include<iostream>
#include<math.h>
#include<stdio.h>
#include<algorithm>
#include<string.h>
#include<vector>
using namespace std;
//typedef __int64 lld;
#define oo 0x3f3f3f3f
#define Mod 1000000007
#define maxn 250
#define maxm 105
#define Exp 1e-9
double dp[(1<<20)+1];
double p[25];
int main()
{
int n;
double none;
while(scanf("%d",&n)!=EOF)
{
none=0.0;
for(int i=0;i<n;i++)
{
scanf("%lf",&p[i]);
none+=p[i];
}Card Collector
none=1-none;
dp[(1<<n)-1]=0.0;
for(int s=(1<<n)-2;s>=0;s--)
{
double has=0.0,sum=0.0;
for(int i=0;i<n;i++)
{
if(s&(1<<i))has+=p[i];
else sum+=dp[s|(1<<i)]*p[i];
}
dp[s]=(sum+1.0)/(1.0-none-has);
}
printf("%.5lf\n",dp[0]);
}
return 0;
}