hdu 4336 Card Collector(状态压缩概率dp)

题意:

给出n中卡片,并且给出买零食能获得每种卡片的概率,问凑齐n中卡片要买零食的包数的期望。

题解:

n<=20并且发现这种概率dp有排列组合的特点,想到用状态压缩来做。

那么方程的推导如下:

状态推导:
初始方程: dp[s] = (1-sum(p[i]))*dp[s] + sum(p[j])*dp[s] + sum(p[k])*dp[s|(1<<k)];
其中:
     i=0、1、2、3、4、5......n  1-sum(p[i])表示没有卡片的概率(这部分概率可以实现计算好用none表示)
     sum(p[j])表示有在已经取到的卡片的概率(这部分概率用has表示)
     sum(p[k])未取到的卡片的概率
通过初始方程移向得出:dp[s] = sum(p[k])*dp[s|(1<<k)] / (1-none-has);

/**
状态推导:
初始方程: dp[s] = (1-sum(p[i]))*dp[s] + sum(p[j])*dp[s] + sum(p[k])*dp[s|(1<<k)];
其中:
     i=0、1、2、3、4、5......n  1-sum(p[i])表示没有卡片的概率(这部分概率可以实现计算好用none表示)
     sum(p[j])表示有在已经取到的卡片的概率(这部分概率用has表示)
     sum(p[k])未取到的卡片的概率
通过初始方程移向得出:dp[s] = sum(p[k])*dp[s|(1<<k)] / (1-none-has);
     
*/
#include<iostream>
#include<math.h>
#include<stdio.h>
#include<algorithm>
#include<string.h>
#include<vector>
using namespace std;
//typedef __int64 lld;
#define oo 0x3f3f3f3f
#define Mod 1000000007
#define maxn 250
#define maxm 105
#define Exp 1e-9
double dp[(1<<20)+1];
double p[25];

int main()
{
    int n;
    double none;
    while(scanf("%d",&n)!=EOF)
    {
        none=0.0;
        for(int i=0;i<n;i++)
        {
            scanf("%lf",&p[i]);
            none+=p[i];
        }Card Collector
        none=1-none;
        dp[(1<<n)-1]=0.0;
        for(int s=(1<<n)-2;s>=0;s--)
        {
            double has=0.0,sum=0.0;
            for(int i=0;i<n;i++)
            {
                if(s&(1<<i))has+=p[i];
                else sum+=dp[s|(1<<i)]*p[i];
            }
            dp[s]=(sum+1.0)/(1.0-none-has);
        }
        printf("%.5lf\n",dp[0]);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值