题意:
给出n个数的集合,集合允许有重复的数,每次选集合两个数相加加到集合里面,可以操作k次,问集合的和最大是多少。
题解:
会发现其实每次都选择最大的两个加,这样就形成了类似斐波那契的数列。
构造矩阵解之。
#include<iostream>
#include<math.h>
#include<stdio.h>
#include<algorithm>
#include<string.h>
#include<vector>
#include<queue>
#include<map>
#include<set>
using namespace std;
#define B(x) (1<<(x))
typedef long long ll;
const int oo=0x3f3f3f3f;
const ll OO=1LL<<61;
const ll MOD=10000007;
const int maxn=2;
int n;
int val[100005];
struct Matrix
{
ll maze[3][3];
friend Matrix operator*(Matrix a,Matrix b)
{
Matrix c;
memset(c.maze,0,sizeof c.maze);
for(int i=0;i<3;i++)
for(int j=0;j<3;j++)
for(int k=0;k<3;k++)
c.maze[i][j]=(c.maze[i][j]+a.maze[i][k]*b.maze[k][j]+MOD)%MOD;
return c;
}
friend Matrix operator^(Matrix a,ll k)
{
Matrix c;
for(int i=0;i<3;i++)
for(int j=0;j<3;j++)
c.maze[i][j]=(i==j);
while(k)
{
if(k&1)
c=c*a;
a=a*a;
k>>=1;
}
return c;
}
};
int main()
{
int a,b;
ll k,sum;
Matrix A;
A.maze[0][0]=1;A.maze[0][1]=1;A.maze[0][2]=1;
A.maze[1][0]=0;A.maze[1][1]=1;A.maze[1][2]=1;
A.maze[2][0]=0;A.maze[2][1]=1;A.maze[2][2]=0;
while(scanf("%d %I64d",&n,&k)!=EOF)
{
sum=0;
for(int i=1;i<=n;i++)
scanf("%d",&val[i]);
sort(val+1,val+1+n);
for(int i=1;i<=n-2;i++)
sum=(sum+val[i]+MOD)%MOD;
a=val[n];
b=val[n-1];
///接下来是矩阵快速幂
Matrix F1;
memset(F1.maze,0,sizeof F1.maze);
F1.maze[0][0]=a+b;
F1.maze[1][0]=a;
F1.maze[2][0]=b;
Matrix ans=(A^k)*F1;
cout<<(ans.maze[0][0]+sum+MOD)%MOD<<endl;
}
return 0;
}