题意:
给出一个范围,这个范围的数换算成二进制,然后根据1的数目排序从少到多,如果1的数量相同就根据数字的大小排序,大的在后面。求第k大的数。
题解:
数位的统计问题,首先预处理dp[i][j]位数i,1的个数j的数的个数。然后根据区间我们枚举1的个数,计算区间1的个数为i的数的个数,不断累加直到超过k,那么k中1的个数肯定是等于枚举的最后一个i。那么在去区间二分答案。
#include<iostream>
#include<math.h>
#include<stdio.h>
#include<algorithm>
#include<string.h>
#include<vector>
#include<queue>
#include<map>
#include<set>
using namespace std;
#define B(x) (1LL<<(x))
void cmax(int& a,int b){ if(b>a)a=b; }
void cmin(int& a,int b){ if(b<a)a=b; }
typedef unsigned long long ll;
const int oo=0x3f3f3f3f;
const int MOD=1000000007;
const int maxn=22;
int dp[33][33],k;
void DP(){
memset(dp,0,sizeof dp);
dp[0][0]=1;
for(int i=1;i<=31;i++){
dp[i][0]=dp[i-1][0];
for(int j=1;j<=i;j++){
dp[i][j]=dp[i-1][j]+dp[i-1][j-1];
}
}
}
int calc(int n,int k){
int tol=0,ans=0;
for(int i=31;i>=0;i--){
if(n&B(i)){
tol++;
if(tol>k)break;
n^=B(i);
}
if(B(i-1)<=n)ans+=dp[i-1][k-tol];
}
if(tol+n==k)ans++;
return ans;
}
int solve(int m,int n,int k){
int sum,i;
for(i=1;i<=31;i++){
sum=calc(n,i)-calc(m-1,i);
if(sum>=k)break;
k-=sum;
}
int l=m,r=n,mid;
while(l<r){
mid=((ll)l+(ll)r)>>1;
if(calc(mid,i)-calc(m-1,i)<k)
l=mid+1;
else
r=mid;
}
return l;
}
int main(){
/*
#define ON 1
#ifdef ON
freopen("E:\\read.txt","r",stdin);
#endif // ON
//*/
int T,m,n;
DP();
scanf("%d",&T);
while(T--){
scanf("%d %d %d",&m,&n,&k);
if(n==0&&m==0){ printf("0\n"); continue; }
if(m>=0&&n>=0){
if(m==0){
m++;
k--;
}
if(k==0) printf("0\n");
else printf("%d\n",solve(m,n,k));
}else{
if(n==0){
n--;
k--;
}
m&=(~B(31));
n&=(~B(31));
printf("%d\n",B(31)|solve(m,n,k));
}
}
return 0;
}
/**
*/